DAEDALUS

TEKNISKA MUSEETS ÅRSBOK
1950. TJUGONDE ÅRGÅNGEN

STOCKHOLM 1950
Redaktör och ansvarig utgivare: Torsten Althin.
Vid återgivandet av text eller bilder angives såsom källa:
Dædalus 1950.

Tryckt hos NORDISK ROTOGRAVYR, STOCKHOLM 1950.
Typografi: Anders Billow.
1949 har varit Tekniska Museets tjugosjätte arbetsår. Som framgår av museidirektörens redogörelse i denna årsbok har verksamheten kunnat bedrivas i samma omfattning som tidigare. Detta har främst kunnat ske tack vare de bidrag av olika storlek och i olika former som ett betydande antal industriföretag lämnat och det an-
slag, som erhållits av medlemsavgifternas in Föreningen Tekniska Museet. Tillskotten av föremål och arkivalier till samlingarna ha även under detta arbetsår varit mycket värdefulla.

Det är för oss angeläget att här betyga vår tacksamhet till alla dem som visat Tekniska Museet välvilja och förståelse. Vår tacksamhet riktas denna gång särskilt till styrelsen för Knut och Alice Wallenbergs Stiftelse, som genom ett anslag möjliggjort en välbehövlig reparation av museibyggnadens fasader så att byggnaden till det yttre åter ter sig i ett värdigt skick.

Stockholm i mars 1950.

HELGE ERICSON
Ordförande i styrelsen för Stiftelsen Tekniska Museet.

STEN WESTERBERG
Ordförande i Föreningen Tekniska Museet.
INNEHÅLL

Inledning 5
Dædalus 9

Redogörelser.

Tekniska Museet under år 1949 11
Föreningen Tekniska Museet under år 1949 .. 37

Avhandlingar.

George Spaak och Torsten Althin, Enkelmikroskop,
som möjligt tillhör Emanuel Swedenborg 41
Gösta Bodman, Sven Rinmans resanteckningar, del II 53
Irma Åström, Linberedningsverken i Hälsingland under
1700-talet .. 65
Gösta Bodman, Pottasketillverkningen i Sverige till
1700-talets mitt 89
Gunnar Lindmark, Teknikhistoriska notiser 121

Meddelanden.

Backmans kassaskåp, av Torsten Althin 141

Författareregister 1931—1949 145

Svensk ingenjörskonst och industri i annonser .. 150
Dædalus 1950 är den tjugonde årgången av Tekniska Museets årsbok. Med tacksamhet må här erinras om att initiativet till denna publikation togs av Generaldirektör Gösta Malm, museets mångåriga vän och gynnare. Årsboken har under dessa två decennier utgjort en sammanhållande länk för dem som i Föreningen Tekniska Museet slutit upp kring museet, vilket initiativtagaren med stor framsynthet från början avsåg. Men därutöver har årsboken även långt utanför denna krets förmedlat kunskap om museet och om teknikens och industriens historia, såväl de större allmänna dragen som de små detaljerna varav helheten byggs upp. Det har för redaktionskommittén och för årsbokens redaktör, vilka alla varit desamma under de gångna tjugo åren varit glädjande att kunna konstatera, att Dædalus allt oftare citeras som källa vid den teknikhistoriska och industrihistoriska forskningen såväl i Sverige som utomlands. Sammanlagt omfattar tjugo årgångar av Dædalus i runt tal 2 500 sidor text och bilder, vilka distribuerats i nära 60 000 exemplar. Denna del av
museets verksamhet har i väsentlig grad bidragit till att inrangera museet bland de vetenskapligt arbetande museala institutionerna i vårt land.

Ibland, men långt ifrån alltid, ha de i årsboken ingående artiklarna honorerats. Det är för redaktionskommittén angeläget att här, oavsett om ersättning utgått eller ej, tacka författarna för utfört arbete och värdefull medverkan icke endast i denna årgång 1950 utan även retroaktivt.

ÅRSBOKENS REDAKTIONSKOMMITÉ

Edvard Hubendick Richard Smedberg Torsten Althin
TEKNISKA MUSEET UNDER ÅR 1949
Hedersledamöter. **Hedersledamöter av Stiftelsen Tekniska Museet:**

- Ingeniör C. A. Hult
- Direktör Bengt Ingeström
- Direktör Albin Johansson
- Fru Ellida Lagerman
- Ingeniör Philip Pedersen
- Fru Alice Wallenberg

Styrelse. **Under år 1949 — Tekniska museets tjugosjätte arbetsår — har styrelsen för Stiftelsen Tekniska Museet utgjorts av:**

- f. Generaldirektör Helge Ericson (ordf.)
- Överstelöjtnant VVK Richard Smedberg (1:e vice ordf.)
- Direktör Alex. Engblom (2:e vice ordf.)
- Civilingeniör B. Dahlberg
- Byråchefen K. A. Fröman
- Professor E. Hubendick
- Direktör Hans Hylander
- Civilingeniör Birger Kock
- Fil. Dr Sigurd Nauckhoff
- Fil. Dr Harald Nordenson
- Hovrättsrådet Olof Riben
- Generaldirektör Håkan Sterky
- Professor Edy Velander
- Bankdirektör Marcus Wallenberg
- Civilingeniör K. A. Wessblad
- Civilingeniör Tord Ångström
- Docent E. Öman
- Kommerserådet S. E. Österberg
- Intendent Torsten Althin

För tionde gången i följd har i samarbete med Maskinaktiebolaget Karlebo utgivits den tekniska bildkalendern IKARUS, för vilken trycknings- och utgivningskostnader helt bestridas av Maskinaktiebolaget Karlebo, vars chef Ingenjör Selim Karlebo visat museet fortsatt välvilja.

Ingeniörsvetenskapsakademien har av resterande medel från ILIS 1936 lämnat ett anslag av 2 500 kronor för utförande av kompletteringar inom den flyghistoriska avdelningen.

De annonsörer, som möjliggjort utgivandet av den tjugonde årgången av denna årsskrift, är i stort sett desamma som under tidigare år, ty det har visat sig att annonsörerna uppskatta Dædalus som annonsorgan. För detta samarbete är museiledningen särskilt tacksam.

Nedanstående företag och sammanslutningar ha genom årsbidrag, köp av entrébiljetter, annonser i årsboken eller på andra sätt medverkat till att museets arbeten kunnat bedrivas framgångsrikt. För det intresse och den välvilja som visats museet må här frambara museistyrelsens tacksamhet.

AB Addo, Malmö
F. Ahlgrens Tekn. Fabrik AB
Albin Motor, Kristinehamn
Alby Nya Kloratfabriks AB, Avesta
Allmänna Svenska Elektriska AB
Almedahls Fabriker
Almqvist & Wiksells Boktryckeri AB, Uppsala
AB Alpha, Sundbyberg
Alstermo Bruks AB, Hohultslätt
AB Ludvig Anderson, Kinna
AB Åbjörn Anderson, Svedala
AB J. R. Andersson & Co, Sundbyberg
AB Ankarsrums Bruk
AB Apotekarnes Förenade Vattenfabriker i Göteborg.
Apotekarnes Mineralvattens AB
Apoteksvarucentralen Vitrum, Apotekare AB
AB Arboga Margarinfabrik

AB Arboga Mekaniska Verkstad
Arenco AB
AB Arki
AB Armerad Betong, Malmö
AB Askersunds Trikåfabrik
Askersundsverken AB
AB Atlas Diesel
AB Automobilpalatset
AB Wilh. Becker
Bergbolagen AB, Lindesberg
AB W. Dan Bergman, Södertälje
E. A. Bergs Fabriks AB, Eskilstuna
Bergvik och Ala Nya AB, Söderhamn
M. Berlin & Co AB, Värnamo
AB Betongindustri
Billeruds AB, Säffle
Björneborgs Jernverks AB
AB Bofors
Bogesunds Väveri AB, Ulricehamn
Bolidens Gruv AB
AB Bolinder-Munktell, Eskilstuna
AB Borås Klädningsstygsfabrik
Borås Mekaniska Verkstads AB
Borås Wäfveri AB
Boxholms AB
Adolf Bratt & Co, Göteborg
AB Brusafors-Fällefors, Silverdalen
Bryggeri AB Falken, Falkenberg
Bryggeri AB Nordstjernan, Sundsvall
AB Bröderna Hedlund
AB Bröderna KjELLström
Bultfabriks AB, Hallstahammar
Byggnads-AB Contractor
Byggnads AB Konstruktör, Gävle
AB Byggnadsfirman Zetterberg
AB Arvid Böhlmarks Lampfabrik
AB Calvert & Co, Göteborg
Cap Chokladfabrik AB, Göteborg
Hilding Carlssons Mekaniska Verkstad, Umeå
AB A. F. Carlssons Skofabrik
Cykelfabriken Monark, Varberg
AB Dannemora Gruvor
AB Defibrator
Degerfors Järnverks AB
AB de Lavals Ångturbin
Dorch, Bäcksin & Co:s AB, Göteborg
Dux Radio AB
F. Eck's Fabriker AB, Nacka
AB Ehrenberg & Sons Läderfabrik
Elektriska AB A.E.G.
Elektriska AB John Osterman
Elektriska AB Skandia
Elektriska Svetsnings AB, Göteborg
Elektrokemiska AB, Bohus
AB Emsfors Bruk, Påskallavik
AB Elekrolux
Olle Engkvist Byggnads AB
AB Enköpings Verkstäder
Eriksbergs Mek. Verkstads AB
Eskilstuna Borr- och Verktygs AB
Eskilstuna Bryggeri AB
Eskilstuna Fabriks AB
Eskilstuna Jernmanufaktur AB
Fabriks AB Osmund, Uppsala
AB Fabrikksskorsten, Malmö
Fagersta Bruks AB
Falu Yllefabriks AB
AB Falu Ångbryggeri
G. C. Faxe AB, Malmö
Fengersfors Bruks AB, Tössse
AB Ferrolägeringar
AB Fermia, Hälssingborg
AB Figeholms Bruk
AB Finnboda Varf
Finnés Snickerifabriks AB, Lingbo
AB Flygts Pumpar
AB Fogelfors Bruk, Fägelfors
Carl Folke & Co AB
Ford Motor Company AB
Forsaströms Kraft AB, Åtvidaberg
Forshammars Bergverk, Köping
Forss AB, Köpmanholmen
Forssjö Bruk
Forsså Bruks AB, Näsviken
AB Forsåkers Fabriker, Mölndal
AB Fribärande Träkonstruktioner, Töreboda
Fridafors Fabriks AB
Färg AB International, Göteborg
Färg- och Ferniss Fabriks AB Arvid Lindgren & Co.
AB Förenade Superfosfatfabriker, Hälssingborg
Föräkrings AB Nornan
AB Galco
AB Garphytte Bruk
AB Gavleverken, Gävle
Gefle Manufaktur AB, Strömsbro
Gefle Ångväfveri AB
General Motors Nordiska AB
AB Gense, Eskilstuna
AB Gestriklands Yllefabrik, Järbo
Getinge Mekaniska Verkstads AB
Gjuteriaktiebolaget Fundator, Sundbyberg
AB Glacéläderfabriken, Kävlinge
Granit & Beton AB
Rudolph Grave AB
Tekniska Museet år 1949

Gropptorps Marmor AB, Katrineholm
Grufve AB Längban
Grycksbo Pappersbruks AB
Grytgöls Bruks AB
AB Wilh. Grönwalls Läderfabrik, Angelholm
Guldsmedshytte AB
AB Gullhögens Bruk, Skövde
Gullspångs Elektrokemiska AB
Gunnebo Bruks AB
Gusums Bruks & Fabriks AB
Gårda Fabrikers AB, Göteborg
Gävle Varvs- och Verkstads Nya AB
AB Götaverken, Göteborg
Göteborgs Kexfabriks AB, Kungälv
AB Göteborgs Siporexfabrik
Knut Hagberg Fabriks AB, Norrköping
Haglund & Söner AB, Falköping
Otto Halldéns Fabriks- & Handels AB
Hallstahamners AB
Halmstads Järnvaru AB
Halmstads Järnverks AB
Hammarförsens Kraft AB, Sundsvall
Hasselfors Bruks AB
Heby Tegelverk
J. A. Hedberg & Co Industri AB
AB Hedemora Verkstäder
Hellefors Bruks AB
AB Helsingborgs Ängstegelbruk
Hernös Bryggeri AB, Härnösand
Hesselmans Patent AB
Hissmofors AB, Krokom
AB B. A. Hjort & Co
Holmens Bruks & Fabriks AB, Norrköping
Allan Holmquist AB
AB Malcus Holmquist, Halmstad
Hultsfreds Träförrådlings AB
AB Husqvarna Borstfabrik
Husqvarna Vapenfabriks AB
Hvilans Mekaniska Verkstads AB, Kristianstad
Hylte Bruks AB, Hyltebruk
AB Claes Håkansson, Kinna
Häfle Bruks AB
AB Hågglund & Söner, Örnsköldsvik
AB Hässleholms Verkstäder
Höganäs-Billesholms AB
AB Höganäsarbeten
Idkerbergets Gruf AB
AB Iföverken, Bromölla
AB Iggesunds Bruk
AB Imo-Industri
Industri AB Luxor, Motala
Ingenjörsfirma Sven Carlson AB, Falun
Instrument AB J. A. Palm
Internationella Siporex AB
Jernkontoret
AB Axel Johanssons Mekaniska Verkstad, Västerås
AB C. E. Johansson, Eskilstuna
AB Vilhelm Johnsen
AB Adolf Johnson & Co
Jonsereds Fabrikers AB
Jönköpings Mekaniska Werkstads AB
Jönköpings & Vulcans Tändsticksfabriks AB
Kalmar Verkstads AB
AB Kardbeslag, Norrköping
Karlholms AB, Karlholmsbruk
AB Karlstads Mek. Werkstad
Katrinefors AB, Mariestad
AB Kema
Kilsunds AB, Borås
Kinnaströms Väfveri AB, Kinna
AB Kinnevik, Lidköping
Kjellbergs Successors AB
AB Klippans Finpappersbruk
AB Klippans Läderfabrik
AB Knutspbrook Kraftstation, Norrköping
Birger Kock AB
Kockums Jernverk, Kallinge
Kockums Mekaniska Werkstads AB
Kohlswa Jernverks AB
Konfektions AB Salén
Kooperativa Förbundet
Kopparfors AB, Ockelbo
Korsnäs AB, Gävle
Tekniska Museet år 1949

Kraft AB Gullspång-Munkfors
Kramfors AB
AB Kritbruksbolaget i Malmö
AB Kronsågar, Lidköping
Krångede AB
Köpings Mek. Verkstads AB
AB Landelius & Björklund
AB Landsverk, Landskrona
Lavén's Kolimport AB
Dr-Ing. Herbert Lickfett AB
Lidköpings Mek. Werkstads AB
AB Liljeholmens Kabelfabrik
Liljeholmens Stearinfabriks AB
Lilla Edets Pappersbruks AB
Lindells Vågfabriks AB, Jönköping
AB Lindholmens Varv, Göteborg
AB Abel Lindströms Tricottfabrik
Lindås Gjuteri & Formfabriks AB
Linköpings Elektriska Kraft- & Belysnings AB
Linköpings Linnefabriks AB
AB Linnefabriken Merkur, Göteborg
Linoleum AB Forshaga, Göteborg
AB Ljungmans Verkstäder, Malmö
AB Ljungströms Ångstark AB
Ljusne-Woxna AB
AB Lorentzen & Wettres Maskinaffär
AB Luleå Bryggeri
Lumalampan AB
AB Fritz Lundberg, Tranås
C. J. Lundbergs Läderfabriks AB
Lunds Bryggeri AB
Luossavaara-Kiirunavaara AB
Låsfabriks AB, Eskilstuna
Lättbetong AB, Göteborg
AB Löfcko, Jönköping
Mackmyra Sulfit AB
AB Malmö Förenade Bryggerier
Malmö Läderfabriks AB
Malmö Mekaniska Tricottfabriks AB
AB Malmö Strumpfabrik
AB Marks Jacquardväveri, Björketorp
Marma-Långrörs AB, Söderhamn
AB Mataki, Malmö
Matfors Yllefabriks AB

L. A. Matton's Läderfabriks AB, Gävle
Midnäs Industri AB, Bollnäs
Mo och Domsjö AB
Mora Bryggeri AB
AB Moreesco, Malmö
Morgårdshammars Mekaniska Verkstads AB
Motala Ströms Kraft AB
AB Motala Verkstad
Munkedals AB
Munksjö AB, Jönköping
Munters' Industri AB
AB Mälardalens Tegelbruk
Nissaströms Bruks och Kraft AB
AB Nissens Chokladfabrik, Norrköping
Nitroglycerin AB
NKI-skolan
AB Nora Tändrörssfabrik
Norbergs Gruvförvaltning
Nordisk Rotogravyr
AB Nordiska Armaturfabrikerna
AB Nordiska Kompaniet
Nordiska Maskinfilt AB, Halmstad
AB Nordiska Metallduksväveriet, Uppsala
Nordiska Syrgasverken AB
AB Nordiska Tubfabriken, Kungsör
Nordmalings Ångsågs AB
AB Nordströms Linbanor
AB Norma Projektfabriks AB, Ämotfors
Norrhammars Bruk
Norrköpings Bomullsäfveri AB
Norrköpings Tidningars AB
Norrmalins Livsmedels AB
Nya AB Liljeqvists Sågblads- & Redskapsfabriks AB, Eskilstuna
AB Nya Centralbryggeriet, Linköping
Nya Marmorbruks AB, Kolmården
Nya Murbruksfabriken i Stockholm AB
AB Nyborgs Yllefabrik, Norrköping
AB Nybrofabriken, Fröseke
Nyqvist & Holm AB
AB Nyhammars Bruk
AB Nyköpings Automobilfabrik
Nyköpings Bryggeri AB
Nymanbolagen AB
AB Näfveqvars Bruk
Ockelbo Kraft AB
AB Odelberg & Olson
AB Joh. Ohlssons Tekniska Fabrik
Oppboga AB, Fellingsbro
AB Original-Odhner, Göteborg
Oxelösunds Järnverks-AB
AB Oxygenol
AB Papyrus, Mölndal
AB Märten Pehrsons Valsqvarn, Kristianstad
AB Pellerins Margarinfabrik, Göteborg
Carl Persson & Söner AB, Ystad
AB C. A. Petterson, Norrköping
Philipsons Automobil AB
Pix Aktiebolag, Gävle
AB Plåtmanufaktur
AB Primus
AB Pripp & Lyckholm
Ramnäs Bruks AB
Regnklädersfabriken Vargen AB
Reymersholms Gamla Industri AB
Riddarhytte AB
Rockhammars Bruks AB, Sällinge
Rockwool AB, Skövde
AB Rosenblads Patenter
Rosendahls Fabriker AB, Filipstad
E. A. Rosengrens Kasaskåpsfabriks AB, Göteborg
J. N. Rosengrens Metallgjuteri AB, Limhamn
AB Rubberfilm, Åmål
AB Rundströms Maskinaffär, Norrköping
Rydboholms AB
AB Rylander & Asplund
AB Saltsjöqvarn
AB Sandwalls Ångbryggeri, Borås
Sandvikens Jernverks AB
AB Sanitet
AB Scania-Vabis, Södertälje
AB Scharins Söner, Klemensnäs
Schullström & Sjöströms Fabriks AB
See Fabriks AB, Sandviken
AB Separator
AB Servus
Carl Setterwall & Co AB
AB Max Sievert, Sundbyberg
Sievert's Kabelverk, Max Sieverts Fabriks AB, Sundbyberg
AB Sjantorps
AB Sjöberg & Bengtson, Göteborg
Skandinaviska Eternit AB, Lomma
AB Skandinaviska Glödlampfabriken
Skandinaviska Grafitindustri AB, Trollhättan
Skandinaviska Gummi AB
Skandinaviska Jute- Spinneri- & Väfveri AB, Oskarström
Skofabriks AB Oscaria, Örebro
Skyllbergs Bruks AB
AB Skånska Cementgjuteriet
AB Skånska Yllefabriken, Kristianstad
AB Slipmaterial-Naxos, Västervik
Slite Cement- och Kalk AB
AB Julius Slöör
Smedjebackens Valsverks AB
And. Smith Kolimport AB
Spångsholms Bruks AB, Sya
AB S:t Eriks Lervarufabriker, Uppsala
Stenborgs Fabriker, Tierp
Aug. Stenman AB, Eskilstuna
AB Stjernfors-Ställdalen
Stockholms Benmjölsfabriks AB
Stockholms Bomullsspinneri & Väfveri AB
Stockholms Fjäderfabrik, B. Wahl
Stockholms Galvaniseringsfabrik AB
Stockholms Patentbyrå
AB Stockholms Skofabrik
Stockholms Superfosfat Fabriks AB
Stora Kopparbergs Bergslags AB
Stribergs Grufve AB
AB Stridsberg & Biörck
Strömma Bomulls Spinneri AB
Ströms Bruks AB
Ställbergs Grufve AB, Ludvika
AB Hj. Söderberg, Uppsala
AB Surte Glasbruk
Söderhamns Verkstäder AB
AB Sveabryggerier, Filipstad
Södertelje Bryggeri AB
Svenska Aeroplan AB, Linköping
Södra Vetterns Kraft AB, Jönköping
Svenska AB Bromsregulator, Malmö
Tabergs Yllefabriks AB
Svenska Cellulosa AB
AB Tannin, Västervik
Cementa, Malmö
Tegelbruks AB Walla-Katrineholm
Svenska Choklad- och Konfektyrfabrikantföreningen u. p. a.
Telefon AB L M Ericsson
Svenska Diamantbergbörnings AB
Albert Terberger AB
Svenska Elektromagneter, Åmål
J. H. Tidbeck AB
Svenska Elektromekaniska Industri AB, Hälsingborg
Torsviks Sågverks AB, Härnösand
Svenska Järnvägsverkstäderna
Tostarps Träförrädlings AB
Svenska Jästfabriks AB
Trafik AB Grängesberg-Oxelösund
Svenska Kolsyrefabriken
Trelleborgs Gummifabriks AB
AB Svenska Fläktfabriken
AB Triplexfabriken, Fanna
Svenska Gasaccumulator AB
AB Trycksärraper
AB Svenska Järnvägsverkstäderna
Tuolluvaara Gruv AB
Svenska Kullagerfabriken
AB Udholms AB
Svenska Limämneshabriken AB
AB Ulax, Motala
AB Svenska Maskinverken
Ulvsunda Gummifabriks AB
Svenska Metallverken
AB Wahlén & Block
Svenska Oljeslageri AB, Göteborg
Wahlin & Co AB
Svenska Petroleum AB Standard
AB John Wall
Svenska AB Philips
Wargöns AB
AB Svenska Pressbyrån
AB Vattenbyggnadsbyrån
Svenska Skandex AB
Wedevågs Bruks AB
Svenska Sockerfabriks AB, Malmö
Verkstads AB Mekano, Hälsingborg
Svenska Limämneshabriken AB
AB Werner & Carlström, Göteborg
AB Svenska Järnvägsverkstäderna
Tage Wiberg AB, Göteborg
Svenska Turbinfabriks AB Ljungström
AB C. M. Wibergs Vagn- & Redskapsfabrik, Ransta
Svenska Väg AB
AB Wicanders Korkfabriker
AB Svenskt Exporttackjärn
Wirsbo AB
AB Svenskt Konstsilke, Borås
Viskans Kraft AB, Borås
AB Ludvig Svensson, Kinna
AB Vårgårda Armaturfabrik
Sveriges Industriförbund
AB Vägförbättringar
AB Sveriges Förenade Konservfabriker
AB Värnamo Wellpappfabrik
AB Sveriges Förenade Trikåfabriker
Västerviks Kraft AB
AB Sveriges Litografiska Tryckerier
AB Växjö Bayerska Bryggeri
Sydsvenska Kraft AB, Malmö
Syneredsfors Kraft AB
AB Sågbladshabriken i Nora
AB Zander & Ingeströms AB
AB Zinkgruvor, Falun
Det utbredda och livliga intresset för Tekniska Museets verksamhet framgår även av att ökningen av föremålssamlingarna till större delen numera sker på välvilliga givares eget initiativ. För att öka kännedomen om vad museet samlar och gärna tar emot är det lämpligt att i följande redogörelse för samlingarnas tillväxt nämna icke blott de enligt gängse uppfattning märkligaste föremålen utan även vissa till synes obetydliga saker, som först i rätt sammanhang äga ett historiskt värde.

För benägen medverkan till samlingarnas utökande under det gångna året framför museet även här sin tacksamhet till alla givare och andra nedan nämnda. Adressorten angives endast då den icke är Stockholm.

Övriga som skänkt föremål till denna avdelning äro Ford Motor Co AB och Civilingeniör H. Wallérs stärbhus samt Luftfartsinspektör T. Ångström. Staten har genom Bränslekommissionen deponerat den kolvagn, som av polska staten överlämnats med anledning av att
25 millioner ton kol efter senaste världskriget exporterats över polska östersjöhamnar.

Till museets avdelning för metallernas framställning och bearbetning har bland annat som gåva av Arboga Mekaniska Verkstads AB erhållits en skalmodell av excenterpress av en typ som sedan år 1878 och till senaste tid utgått från verkstaden i mer än 200 exemplar, de största med 250 tons presskraft. En inventiös utrustning för blåsrörsanalys, sannolikt utförd vid 1780-talets mitt och som tillhörte Bruksägaren H. Didron på Dalfors i Dalarna, har skänkts av Civilingenjör E. Almquist, Älsten.

Genom Kungl. Telegrafstyrelsens radiobyrå har museet efter eget val från landets största radiosändare fått mottaga ett antal obruk-
Tekniska Museet år 1949

bara rör av olika fabrikat och såväl äldre som ännu gångse typer. Andra äldre sändarrör ha överlämnats av Firma Radiofonii jämte en summervågmeter av Siemens & Halskes fabrikat och en fransk kapacitetsbryggan enligt system Anderson.

Genom testamentem från Ur- och Kronometermakare Carl Fritiof Mattsson, Uppsala, har museet efter eget val och som gåva på vissa villkor fått omhändertaga hela hans verkstad, hans stora samlingar av äldre maskiner, verktyg, urdetaljer, urverk och fullständiga ur, varav flera repeterur och sådana med musik, datumur, decimalur m. m., vidare ett stort antal fotografier, ljusbilder och uppmätningsserier till en mängd av honom reparera ur från hela Sverige samt en serie konstruktionsritningar från hans utbildning vid British Horological Institute och slutligen hela hans sällsamt omfattande samling av urmakerlitteratur. Museet kommer att i sin permanenta utställning uppställa vissa av testator konstruerade och använda maskiner och verktyg jämfört hans arbetsbord, medan det övriga materialet, utan att
splittras, tills vidare skall bevaras i museet, ordnat i sakgrupper och tillgängligt för forskare. Som bidrag till bestridande av kostnaderna för dessa åtgärder ha arvingarna genom lantbrukare Erland Mattsson överlämnat 5 000 kr.

Ett föremål av mycket stort museal värde är det enkelmikroskop från 1700-talets början, som Civilingeniör George Spaak, Bergvik, överlämnat till museet och som utförligt beskrives i denna årsbok.

Fototeknikens olika grenar i museet ha blivit rikligt försedda med föremål. Professor H. Bäckström, som tidigare till museet överlåtit större delen av sin fotografihistoriska samling, har bidragit med flera
Tekniska Museet år 1949

Filmmotograf R. Wästfelt, Sättra Brunn, har överlämnat en av honom år 1926 byggd, ännu fullt användbar, apparat för nedkopiering av normalfilm till smalfilm. Ett antal äldre filmer, varav de flesta äro i användbart skick och i övrigt lämpa sig att visa på museet, ha vid skilda tillfällen inkommit genom gåvor från Arbetsgivarnas Ömsesidiga Olycksfallsförsäkrings AB, Disponent J. E. Brundin, Statens Bränslekommission, och från Lagerföreståndare Alg. Arnborg, Enskede, samt genom deposition av Kungl. Kommerskollegium.

Folkskolläran Eric Carlsson, Hässleholm, har nu såsom gåva helt till museet överlåtit två år 1939 deponerade fonografer jämte ett 60-tal ljudrullar från åren 1895—1900. Den ena apparaten påstods på
Tekniska Museet är 1949

sin tid vara »Skandinaviens största och tydligaste talmaskin» med hörslangar för 14 lyssnare samtidigt och är troligen den äldsta bevarade av de i Sverige såsom nyhet under 1890-talet mot avgift begagnade fonograferna.

Genom notiser i dagspressen har museet efterlyst äldre föremål av
De rörliga demonstrationsanordningarna, som ungdomarna själva kunna sätta i gång i Tekniska Museet tilldraga sig alltid särskilt intresse, som framgår av denna bild från museets maskinhall.
Fläder, »ildmaskinen på Gammelholm.»

De från Jernkontoret erhållna ritningarna, av vilka en här återges i djuptryck på detta blad, utgöra en värdefull länk från ångmaskinens hemland England via Danmark till Sverige.
Under skolövsevakan i februari 1949 besökt museet av ca 2 000 ungdromar. Varje dag hade en särskild programpunkt. I föreläsningssalen talade Professor G. Bodman om »Kallare än kallt« och utförde experiment med flytande syre, levererat från AGA.

Andra under året inkomna föremål, som börja framhållas och tillhöra här ovan ej särskilt rubricerade grupper av samlingarna, äro följande. Minnes- och belöningsmedaljer genom gåvor från Direktör Y. Nordqvist och Fröken Margaretha Cronstedt, Saltsjö-Bo. Ett exemplar av dammsugaren »Lux» modell 2, med vertikalbehållare, vilken tillverkades av AB Lux, Stockholm, åren 1914—1918, har överlämnats av AB Elektrolux. En cigarrlåda av bleckplåt med bilder i färgtryck, scener till minne av John Ericsson och särskilt händelserna under det solenna överförandet av hans stoft till graven vid Filipstad år 1890, har överlämnats av Bankir och Fru C. Wittenström. Två riksbankssedlar från 1800-talets början, vilka utan att skadas lågo i ett av J. F. Backman tillverkat kassaskåp, då detta under tre timmar utsattes för hettan av en stor brasa på Ladugårdsgärde utanför Stockholm den 21 juli år 1858, ha genom Fil. Dr L. Rasmusson överlämnats av Kommendörkapten G. Lilliehöök. Denna gåva behandlas utförligare längre fram i denna årsbok.

Skogshögskolan har deponerat ett antal skalmodeller av såginrättningar, drivna av vattenkraft, vindkraft, medelst trampning, för hand eller av dragdjur i vandring. Modellerna äro utförda under 1900-talets början av Flottningschefen O. J. Näslund, dels efter beskrivningar omkring år 1600, dels efter hans uppmätningar av ännu bevarade anläggningar. Depositionen omfattar även en stor kollektion av de flesta vid Sandviken utförda typerna av sågblad och handsågar jämte tillbehör samt en del prover på mekanisk förädling av virke
och på äldre cellulosaprodukter. En stor och numera historiskt värdefull samling av prov på olika slags torv och därur framställda produkter från såväl statliga som enskilda försök och industriella företag samt tillhörande ljusbilder, fotografier och film har deponerats i museum av Kungl. Kommerskollegium, såsom inte längre motsvarande nutida krav på propagandamedel för rationalisering av torvberedningen.

Några föremål ha tillfälligt visats såsom nyförvärv, andra ha placerats i respektive permanenta visningsavdelningar, medan de övriga magasinerats för framtida behov och lätt tillgängliga för studier. Museet har i större utsträckning än förut kunnat bistå statsinstitutioner, museer, industri företag och föreningar med lån av föremål vid olika slag av utställning. Slutligen har museet i ökad omfattning kunnat bidraga till kulturhistorisk forskning och publicitet även genom utomstående fackmäns studier av föremål eller fotografier av dem och dessas publicering som illustrationer.

Då föreståndaren för arkiv och boksamling slutat sin anställning innan sammanfattning och berättelse över nyförvärven utarbetats, kan redogörelse för dessa och för givarna beklagligtvis icke lämnas förrän i årsboken 1951.

Museets arkiv av konstruktionsritningar har under det gångna året utökats med ett stort antal gåvor. Av största intresse är de från Jernkontoret erhållna laverade ritningarna i skala 1:25 efter uppmätning av Danmarks första ångmaskin, byggd i Köpenhamn 1789—1790, och försedda med kommentarer år 1795 av Mag. Ankar- swärd i samband med ett förslag att i Sverige använda en liknande eld- och luftmaskin. För kännedomen om ångkraftens första uppträdande inom svensk industri är dessa ritningar av stort intresse.
Tekniska Museet år 1949

Ett antal ritningar till Rosborg-Wittenströms ugn, till ångmaskiner m. m. ur Maskiningenjör A. F. Rosborgs och hans sons, Maskiningenjör O. Rosborg, kvarlåtenskap har överlämnats av den senares stårbhus genom Fröken Märta Redlund. I den av Ur- och Kronometermakare C. F. Mattson enligt testamentebestämmelse erhållna gåvan av all hans yrkesmässiga kvarlåtenskap ingår även ett stort antal ritningar till ur och urverksutrustning, utförda av honom, dels under utbildningen vid British Horological Institute i London under seklets början, dels under hans mångfaldiga praktiker i Tyskland och Sverige. Då museet hittills saknat originalritningar av detta slag är denna samling särskilt välkommen. Arméförvaltningens Tygavdelning har överlämnat ritningar till militärballonger och till äldre typer av biplan enligt Breguets och Bristols fabrikat, utförda åren 1905—1923. Från Norsk Teknisk Museum har överlämnats en kopia av en ritning efter en nyligen av museet utförd uppmätning av en vattenhjulsdriven såg i Norge, från år 1861. Smedjebackens Valsverks AB har bidragit med en kopia av en ritning till vattenhjulet i en gammal kvarn vid Smedjebacken. Fröken Aina Lidberg har från Civilingenjör D. Lidbergs arv som överlämnat dennes övningsritningar från kursen i mekanik vid Tekniska Högskolan åren 1885—1888, vilka komplettera museets särskilda samling av elevritningar, liksom de egna övningsritningar från kurser vid andra läroanstalter, som skänkts av Kapten G. Westerlund, Östersund, och Ingenjör A. Grane, Västerås. Principritningar, jämte förklaringar, till en originell idé att mekaniskt omsätta den rätlinjiga rörelsen hos hjuldon med dragare till roterande medelst valsar som underlag för hjulen ha överlämnats av Snickare J. E. Eriksson.

Ledamoten av styrelsen för Filmhistoriska samlingarna Direktör Tor Cederholm har avlidit. Samlingarna hade i honom en verklig vän och gynnare, som generöst skänkte många dyrgrippar från filmens barndom. Efter Direktör Cederholm har i styrelsen såsom representant för Svenska Filmsamfundet inträtt Fil. mag. Rune Waldekrantz.

Allt fortfarande har arbetet med Samlingarna kunnat fortfarande genom anslag från Sveriges Biografägareförbund och Filmägarnas Kontrollförening u.p.a. Dessutom har AB Ri-teatrarna lämnat ett anslag. Genom en privat donation har möjliggjorts framställning av nya negativ och kopior av äldre värdefulla filmer, vilka delvis ställts till förfogande av AB Svensk Filmindustri. Härigenom ha Samlingarna kunnat genom byte med utländska filmarkiv berika sitt innehav av
Sålunda har från det tjeckoslovakiska filmarkivet mottagits den tyska filmen »Mädchen in Uniform» i utbyte mot den österrikiska »Das alte Gesetz», och La Cinémathèque Française har skänkt fyra klassiska franska avant-garde-filmer och i stället erhållit »Körkarlen» och »Herr Arnes pengar». Till det senare bytet har Svenska Filmsamfundet bidragit genom de medel som Filmveckan 1946 lämnade.

Slutligen ha värdefulla filmer deponerats av följande bolag: AB Columbia Film (11 st.), AB Fox Film (1 st.), AB Svensk Filmindustri (3 st.) samt diverse reklammaterial av Film AB Paramount.

Någon förändring i personalen vid Samlingarna har inte inträffat under året. Emellertid har en frivillig arbetskraft, Herr Berndt Santesson, utan ersättning bistått vid arbetet under hela året, varigenom flera värdefulla katalogiseringar m. m. blivit utförda.

I än större utsträckning än tidigare har arkivet utnyttjats av de filmstudierande, och utlåning av arkivfilm till enskilda visningar i filmstudios och liknande föreningar har skett i avsevärt ökad omfattning. Härigenom har Samlingarnas syfte att sprida kännedom om filmens konstnärliga, historiska och tekniska utveckling kunnat allt bättre tillgodoses.

Vandringsutställningen GARN VAV TRIKÅ: omnämnd i årsboken 1949, avslutades under våren 1949, sedan den visats på de i föregående berättelse angivna platserna. Den mottogs överallt med stort publikintresse och erhöll mycket stor publicitet i dagspressen.
Under sommaren 1949 anordnades i museets salar för tillfälliga utställningar en exposé, kallad »Från spark till knarr», visande sport-velocipedens utveckling samt exempel på gamla bilar som deltagit i biltävlingar. Dessutom utställdes museets äldsta glidflygplan.

Vid den av Stockholms-Tidningen i samarbete med Svenska Fysikersamfundet ordnade utställningen Atomåldern medverkade museidirektören med föredrag samt i det förberedande kommittéarbetet.

Under skollovsveckan i februari ordnades i museet sedvanliga visningar, demonstrationer och tävlingar för över 2 000 skolungdomar.

Den 14 januari arrangerades med anledning av att museiverksamheten pågått i jämnt 25 år en musikafton i museets minnessal med konsert av Stockholms Teknologorkester (35 man) under ledning av Daniel Helldén och i närvaro av DD KK HH Kronprinsen och Kronprinsessan. Över 700 åhörare hade kommit tillstädes. Även den 20 maj och den 18 november konsertade samma orkester i minnessalen under stor publiktillslutning, varefter museisamlingarna förevisades.

Ett mycket stort antal utländska museimän har under året studerat Tekniska Museets organisation, byggnad och samlingar, bland dem en delegation från Carnegie United Kingdom Trust.

Den största tillfälliga utställningen under året har varit »Till Antarktis 1949—1952», ordnad på uppdrag av Svenska Antarktiska Kommittén av museet i samarbete med Svenska Dagbladet. Den öppnades den 12 augusti och pågick till den 4 september samt omfattade dels minnen från Nordenskjöldsa expeditionen till Antarktis 1901—1903 samlade och utställda av en av expeditionsdeltagarna Pro-

På initiativ av sekreteraren i den nybildade konstnärsammanslutningen Föreningen Industrimotiv, Fil. Dr Sixten Rönnow, utställde 16 konstnärer målningar, pasteller och grafiska blad med tekniska och industriella motiv under tiden den 19 nov.—11 dec.

Även under 1949 har antalet gruppbesök varit glädjande stort. Sålunda ha 648 grupper under ledning besett museet, därav 301 grupper från folkskolor, 143 från läroverk och folkhögskolor, 122 från tekniska läroanstalter, 33 militära grupper och 49 klubbar och föreningar. Museets permanenta avdelningar ha under året besetts av 48 664 personer.

Fastigheten.

Tack vare ett anslag från Knut och Alice Wallenbergs Stiftelse ha museibyggnadens samtliga fasader kunnat genomgå en välbehövlig grundlig yttre reparation och omputsning sedan byggnadstillstånd erhållits den 18 juli. Arbetet utfördes av Byggnadsfirman F. G. Larsson med Intendent Ture Pettersson och Civilingeniör Sven Nycander som kontrolleranter och rådgivare.

Personalen.

Vid museet ha arbetat: undertecknad som museidirektör; Assistent L. Way-Matthiesen som samlare, forskare och registrator för föremålsamlingarna och ritningsarkivet med Museibiträdet Wicktor Bjur och Sixten Lindekrantz som medhjälpande för föremålsens vård. Professor Gösta Bodman som museilektor och teknikhistorisk forskare; Fil. Dr Sixten Rönnow som arkivarie och föreståndare för boksamlingen; Ingeniör Julius Gelhaar (från 1 sept.) som medhjälpare inom arkiv och boksamling; Verkmästare Arvid Ericsson som chef för museets snickarverkstad och modellverkstad med Bertil Engman (tillika elektrisk montör), Alf Augustsson, och Erik Eriksson som medhjälpare inom verkstäderna. Inom kansliet Fru Inga-Britt Borrvall kassörka och bokförserska till 15 aug., därefter Fruken Ingrid Bylén; Fruken Elisabeth von Sydow sekreterare; Expeditionsvakten Einar Palmquist tillika registrator för fotonegativ; Fruken Anne-Marie Lindgren för museets telefonväxel och biträde vid maskinskrivning, Fru Märta Fernsten kassörka vid huvudentrén. Ordinarie mu-

Under året ha arbetat som arkivarbetare Herrar Karl Strömstedt, Otto Lindeberg och Bergsingeniör Tor Angeldorff samt tillfälligt inom arkivet Fru Ellen Lindquist.

Vid Filmhistoriska Samlingarna ha varit anställda Arkivarie Einar Lauritzen som föreståndare med Dr Ernst Sulzbach och Herr Olle Rosberg som medhjälpare.

Här må upprepas vad som sagts i tidigare årsberättelser, nämligen att på grund av den ringa arbetsstyrkan och museiverksamhetens ökande omfattning kunna de anställdas arbetsområden icke strängt fixeras. De ha därför fått liksom under tidigare tillfällen ingripa och hjälpa till med arbetsuppgifter av de mest skiftande slag, vilket givetvis är till förfång för det ordinarie arbetet men nödvändigt för att verksamheten skall kunna kontinuerligt fortgå.

Stockholm den 31 december 1949.

Torsten Althin.
FÖRENINGEN TEKNISKA MUSEET
UNDER ÅR 1949
Styrelse.

Föreningens Tekniska Museet styrelse under år 1949 har utgjorts av:

Hedersordförande:
H. K. H. Kronprinsen

Ordförande:
Direktör Sten Westerberg

Vice ordförande:
Kommerserådet S. E. Österberg

Styrelsens ledamöter:
Intendent Torsten Althin
Direktör Björn Edström
Ombudsman Fritjof Ekman
Överingeniör Bernhard Ell
f. Generaldirektör Helge Ericson
Direktör Helge Hirsch
Direktör Albin Johansson
Direktör Johan-Olov Johansson
Ingeniör Selim Karlebo
Civilingeniör Einar Lagrelius
Direktör Ragnar Liljeblad
Direktör Gunnar Magnuson
Fil. Dr Sigurd Nauckhoff
Bibliotekarie Alvar Silow
Överstelöjtnant VVK Richard Smedberg
Tekn. Dr Hilding Törnebohm

Sekreterare och Skattmästare:
Ingeniör Bengt Nauckhoff

Revisorer:
F:e Byråingeniör Erik Lundeberg
Revisor Harry Sjöåker

Revisorssuppleanter:
Ingeniör Olof Florell
Revisor J. Nandorf

Den 4 februari hade Sveriges Vattenfabrikanters Riksförbund tillsammans med föreningen anordnat en Torbern Bergman-afton under ordförandeskap av Kommerserådet S. E. Österberg. Stadsbibliotekarie Göte Carlid höll ett föredrag om Torbern Bergmans liv och verk. I ett kortare anförande redogjorde Direktör Bertel Linder i Sveriges Vattenfabrikanters Riksförbund för de insatser som Torbern Bergman gjort inom mineralvattenindustrien, och han framhöll härvid att problemet att på industriellt sätt binda kolsyra i vattnet lösats av Torbern Bergman. Härefter överlämnade vice Häradshövding Gustaf Masreliez från Sveriges Vattenfabrikanters Riksförbund till museet en replik av det medaljongporträtt, som Sergel utfört av Torbern Bergman.

Professor Gösta Bodman demonstrerade i museets föreläsningssal framställning av kolsyrat vatten med tillhjälp av en apparatur som utförts såsom en replik av Torbern Bergmans apparater för framställning av mineralvatten.

Sedan museets avdelning för bryggeri och mineralvatten demonstrerats, samlades deltagarna till treesamkväm i minneshallen.

Den 30 mars var föreningen kallad till årsstämma i Östermans utställningshall, där utställningen »Atomåldern» demonstrerades under sakkunnig ledning.

Sedan denna instruktiva utställning genomgåtts samlades medlemmarna till årsmöte, varvid museidirektören i ett kortare anförande kärade om »De stora upptäckterna».

Under verksamhetsåret har Föreningens Tekniska Museet medlem-
Medlemmar

Medlemmar varit inbjudna till av museet anordnade utställningar liksom även till en den 20 maj arrangerad vårkonsert, vid vilken Stockholms Teknologorkester under Daniel Helldéns ledning spelade verk av Bach, Haydn, Stenhammar och de Frumerie.

Av föreningens medlemmar ha under året 25 avlidit, därav 2 ständiga.

Ärligen betalande medlemmar 1017
Ständiga medlemmar 80
Korporativa medlemmar 47

Föreningen har av influtna medel till museet överlämnat kr 12 000: —.

Stockholm den 31 december 1949.
Bengt Nauckhoff
George Spaak och Torsten Althin

ENKELMIKROSKOP, SOM MÖJLIGENTILLHÖRT EMANUELSWEDENBORG

Till Tekniska Museet överlämnades som gåva år 1949 av Civilingeniör George Spaak ett enkelmikroskop av Leeuwenhoeks typ. Om detta märkliga instrument och dess sannolika historia handlar denna uppsats.
Enkelmikroskop

Emellertid erhöll museet i augusti 1949 som gåva av Civilingenjör George Spaak, Bergvik, ett enkelmikroskop i original (T. M. 24.549), som uppvisar många väsentliga likheter med Leeuwenhoeks mikroskop och sannolikt är från den tid, då denne ännu levde. Om instrumentet
Enkeltmikroskop

Det till Tekniska Museet skänkta instrumentet förvaras i ett enkelt svartmålat träfodral med fördjupningar för instrumentets fasthållande, då fodralet är stängt. Själva mikroskopet består av ett 101 mm långt mässingsskaft, i vars övre del en lins (9 mm i diam.) är infattad mellan tvenne hopkittade mässingsringar (20 mm i diam.). Mikroskopet skall hållas i handen och nära intill ögat. Den del av linshållaren, som är vänd mot ögat, är överdragen med svart färg så att

1 Välvligt meddelat av Mr. F. Sherwood Taylor, Curator vid museet. — En framstående kännsare av mikroskopets historia, Dr. Reginald Clay, har i brev meddelat: »I have never seen a microscope like this. It is as you say, a development of the Leeuwenhoek microscope. It has a slight resemblance in the design of the handle to the Musschenbroek mic. but of course may have been made by any one.»

— Om tillverkning av mikroskop se även Nicolai Bion, Mathematische Werck-Schuhe, Weitere Eröffnung ... von Johann Doppelmayer. Nürnberg 1717. Däri beskrives utförligt tillverkning av mikroskop med en enkellins, bordstativ och skjutbar preparathållare, men icke något med skaft försett instrument att hålla i handen.

Enkelmikroskop

Det har konstaterats att Leeuwenhoek tillverkat linser med förstoringsfaktorer upp till 270 gånger. Oftast tillverkades de med hans okända slipmetoder av glas, men han använde också bergkristall och någon gång även diamant.

Om således instrumentet i Tekniska Museets samlingar i och för sig har ett betydande vetenskapligt och teknikhistoriskt värde, och om det dessutom måhända är det enda i sitt slag bevarade i Sverige, vilket ytterligare ökar dess värde, kommer därtill ännu ett moment av stort intresse. *Vem har ägt detta, kanske icke unika, men mycket sällsynta instrument?*

Instrumentet har till för endast någon kort tid sedan förvarats på Axmars numera nedlagda järnbruksverksamhet i Gästrikland ca 4 mil norr om Gävle och framkom, då jag (Spaak) i egenskap av testamentexekutor hade hand om boet efter bruksförvaltaren på Axmar A. G. Sevon (1847—1934). Detta bo omfattade i möbelväg mycket som härledde sig från 1800-talets första årtionden och åtskiljligt av påtagligt antikvärde. Bland diverse småsaker fanns även det till det yttre oansenliga
Antony van Leeuwenhoek (1632—1723), detalj av oljemålning av J. Verkolje s:r, Rijksmuseum i Amsterdam

A. van Leeuwenhoeks mikroskop i Rijksmuseum voor de Geschiedenis der Natuurwetenschappen, Leiden. Ett av silver (till vänster) och två av mässing. Preparathållarens konstruktion och de små bikonvexa linserna synas på de senare. Instrumenten (5—6 cm höga) avsedda att hållas i handen är här för fotografering monterade på en träribba.
enelmikroskopet av Leeuwenhoeks typ. Först gjorde det på mig (Spaak) intryck av att vara en skaftförsedd lupp och som sådan förvärvades det också. Senare kom jag underfund med att det var ett enelmikroskop av nyssnämnd typ. När alltså den verkliga arten av fyndet stod klart syntes det föga sannolikt att det ursprungligen anskaffats av en lekman, och frågan uppkom då hur och varför instrumentet hamnat just på Axmars järnbru. Inför denna fråga gav en ännu bland befolkningen på platsen levande tradition impulsen till undersökningar rörande instrumentets historia.

Enligt traditionen skulle Emanuel Swedenborg ha bott på Axmar, vilket också stämmer med verkligheten. Med utgångspunkt från detta ha undersökningarna hittills gett det resultat, som framgår av det följande.

Vid tiden för denna arvstvist hade Swedenborg återvänd från sin andra utlandsresa, nämligen till gruvor och järnbru i Belgien och Tyskland. Han var då extraordinarie assessor utan lön i Bergskollegium. Av intresse i detta sammanhang är emellertid hans första utländska resa.

Sensommaren 1710 for Swedenborg, eller Svedberg, som han då hette, vid 22 års ålder till England, där han i London och Oxford bedrev vetenskapliga studier. I London bodde han först hos en ur-

Har han möjligen redan i England skaffat sig ett mikroskop? Mot detta skulle möjligen det förhållandet kunna tala, att han under sina första resor och för övrigt även senare ofta hade ont om pengar. Under sin vistelse i England hade han att ombesörja åtskilliga uppdrag, bland annat att år 1712 anskaffa ett »microscopium» (av Marshalls konstruktion) till Benzelius, men då detta kostade 4 guineas, måste han avstå. Swedenborg var dock icke fattig, ty han hade inkomster från sitt morsarv från 1696 och fick det ännu bättre ställt, när han fick ett arv efter sin styvmoder (Sara Bergia) 1722, som bland annat möjliggjorde hans nyssnämnda andra utländska resa.

Emellertid är särskilt vikt att observera, att Swedenborg i ett brev till Benzelius redan 13 okt. 1710 säger sig ha anskaffat förutom vetenskapliga böcker, astronomiska tuber, camera obscura, även ett mikroskop. Om Swedenborg verkligen köpt mikroskopet framgår dock ej direkt av brevet, men så torde ha varit fallet. Det sannolika är att det icke kan ha varit något dyrbart instrument, som han köpt, utan
Enkelmikroskop

snarare av den enklare och således billigare typen, som motsvarar Leeuwenhoeks enkelmikroskop. Kanske har det t. o. m. varit ett instrument i second hand.

I en förteckning över Swedenborgs lösöre, som han själv upprättade år 1770 (två år före sin död), finns upptaget ett mikroskop med tillbehör. Detta kan dock knappast vara identiskt med ett enkelmikroskop av Leeuwenhoeks typ, som just saknade »tillbehör».

Vi återvända nu till tidpunkten för Swedenborgs återkomst från sin andra resa, vars huvudsyfte var, att han genom studier av utländsk bergshantering skulle öka sina kvalifikationer som tjänsteman i Bergskollegium. Efter sin hemkomst, och sedan han från 1723 fått lön som extraordinarie assessor och därigenom fick sätte i Bergskollegium deltog han också flitigt och aktivt i kollegiets sammankomster. Tack vare detta och Bergskollegii bevarade handlingar är det möjligt att i viss mån precisera Swedenborgs vistelseort, när han vid olika tillfällen lämnade Stockholm. Sålunda framgår det att han under tiden nov.

Vilken användning kan Swedenborg ha haft för ett eller flera mikroskop? Säkerligen på de flesta naturvetenskapliga områden, som han gav sig in på. Vi kunna här näja oss med att nämna hans märkliga studier i anatomi. Allt det väsentliga av de vetandets landvinningar man gjort före och samtidigt kände Swedenborg till. Han var väl förtragen med makro- och mikroskopisk anatomi och kände till Leeuwenhoeks banbrytande arbeten inom mikroskopien. Även om många av Swedenborgs sammanställningar och skrifter bygga på andras arbeten och publikationer och även om han själv anger sig väsentligen vara litteraturgranskare, kompilator och eklektiker, har han med utomordentlig framgång gjort egna studier och iakttagelser vid vilka ett mikroskop bör ha varit oundgängligen nödvändigt. I ett brev till Erik Benzelius (3 nov. 1719) berättar Swedenborg att han börjat sina studier i anatomi och även skrivit en avhandling därom. Sannolikt har han då behövt använda ett mikroskop och under sina fortsatta studier i detta och andra ämnen under 1720-talet medfört instrumentet på sina resor även till Axmar och kanske av en eller annan anledning låtit det stanna kvar på platsen.

Det kan ju synas märkligt att ett instrument av detta slag skulle kunna ha blivit bevarat så länge på ett järnbruks, där det under lång tid knappast kan ha haft någon direkt användning. Historiska föremål ha ofta mycket underliga öde, och stundom är det som om en skyddande hand hållas över dem för att de skola bli bevarade.

Det finns ju många personer, som högst motvilligt göra sig av med även sådant som kan betecknas som skräp eller är obegripligt och
Enkelt mikroskop

kanske synes ändamålsloöst. Men det fordras oftast ännu något mer för att ett föremål på samma sätt som det ifrågavarande mikroskopet skall bli bevarat, mer eller mindre bortglömt. Det fordras en viss kon-

tinuitet beträffande boställsinnehavarna och de nystillträdandes över-
tagande av lösegendomar så som det skett och sker t. ex. på slott,
herresäten och bondgårdar. Något liknande har också förekommit
vid förvaltarboställen på de gamla bruken. I ifrågavarande fall kan
en viktig orsak till att mikroskopet blivit bevarat varit den, att Ax-
mars järnbruk var fideikommiss (von Schinkel) från 1805 och till
1890, då järnbruket förvärvades av nuvarande ägaren Bergvik och
Ala Nya AB.

Vad bruksförvaltare A. G. Sevon på Axmar beträffar, efterträdde
hans företrädare, Aug. Högberg, år 1879 sin företrädare i samma
tjänst G. W. Kjellman, död samma år. Efter honom finns bevarat
auktionsprotokollet över det rätt omfångsrika boet. Därav framgår
att efterträdaren Högberg inropade mer än hälften av detta bo, och
donna omständighet visar i huru stor omfattning en bruksförvaltare
förr övertog sin företrädares hem och bohag. Säkerligen gick man vid
ifrågavarande tillfälle icke så grundligt tillväga. Därpå tydde det
överhörd, kanske hundraåriga, dammlager som i våra dagar täckte
några gamla saker på vinden högst upp under taket.

Det i sitt ytterst anspråkslösa fodral dolda mikroskopet låg visser-

ligen icke på vinden utan i en skrivbordslåda på kontoret tillsammans
med papper och ovidkommande ting. Där hade det säkerligen legat
60 år eller 70 år från att tidigare kanske ha legat på en hylla i någon av de
många skrubbar på vinden, där man bl. a. fann björnspjut och lik-

nande mindre vanliga ting. I en sådan skrubb kan mikroskopet myc-

ket väl ha legat bortglömt ända sedan det efter Swedenborgs sista
besök på Axmar blev undanlagt, jämte möjligen annat som tillhör-
honom. När kan detta ha skett? Troligen någon gång senast mellan
åren 1745 och 1755, då Brita Behm dog och samtidigt den ene av hennes
arvingar, Johan Adrian Rosenadler, sålde sin hälft i Axmar bruk
till sin bror. Vid lagfarten på detta köp nämnes intet om Sweden-
borg, vilket tyder på att han redan tidigare sålt sin ägande 1/5. Möj-
ligen kan detta ha ägt rum några år efter 1744. Då utgav han näm-
ligen sitt berömda anatomiska och fysiologiska arbete, Regnum
Animale, och förklarade samtidigt, att hans intresse för naturveten-
skaperna var slut. Man kan kanske då utgå ifrån att också mikro-
skopet därmed lämnades åt sitt öde till dess att det av lyckliga om-
ständigheter åter kommit i dagen för att bevaras för framtiden som en mycket betydelsefull länk i mikroskopets tekniska utveckling och som ett historiskt värdefullt föremål, vilket möjligen tillhört och använts av Emanuel Swedenborg.

Professor Gösta Bodman fortsätter återgivandet av Rinmans reseanteckningar. En avslutande del kommer i Dædalus 1951.

I icke mindre än fem avhandlingar eller uppsatser under åren 1739—41 nedlägger Triewald sina rön. Vid ett tillfälle citerar han Urban Hjärne, som 1694 yttrat: »Stenkol brytas vid Hälsingborg, och är icke tvivel, att de ock måste flerastädes finnas. Anledning har man därtill nära alunbruk eller längre ikring såsom ock i Jämtland. Ty där skiffer och alun är, där plägar ock icke heller gemenligen stenkol vara långt borta. Den som mer av det slaget yppar, har sin hittelön ärligen förtjänt.»

Triewald fortsätter: I Tyskland visste de för några och femtio år sedan intet vad stenkol var. En nationalekonomisk vink ger han även. Engelska stenkol kostar producenten vid stjöstranden (hamnen) i New-Castle 9 3/15 öre kopparmynt per tunna, under det att man i Sverige får betala 3 dlr kmt för samma stenkol d.v.s. mer än tio gånger så mycket (3 dlr kmt=96 öre kmt).

Om den giftiga »imman» i stenkolsgruvorerna, säger Triewald: »Att utspanna den skadliga och dödliga luftens rätta egenskap är en sak icke så lätt som mången kunde tro, emedan oss dödliga till större delen ännu är okunnigt, vad egentligen det är för delar uti vår luftkrets.»

År 1741 redogör assessorn i Bergskollegium Lars Benzelstierna
Sven Rinmans reseanteckningar, II

(1680—1755) för de stenkolsförsök vid Hälsingborg, vilka på 1730-talet upptagits av vissa associerade. År 1738 hade man vid Norra Vallåkra funnit några lovande fyndigheter och där anlagt en ordentlig gruvbyggnad, men kolmäktigheten var blott 1 å 1½ aln (ca 7,5 dm), så att arbetaren tvingades att arbeta i liggande ställning. »Jag har själv försökt en sådan gruvgång«, säger Benzelstierna, »och icke funnit den ibland de behagligaste«.

Den sista uppsatsen om stenkol från denna tid publicerades ungefär vid Rinmans hemkomst till Sverige. Den var författad av auskultanten i Bergskollegium Anders Svab (1723—1770), vilken en tid förestått gruvarbetet i Skåne. Han redogör i sammanrängd form för metoder att finna strykning och stupning för kolflötser.

Rinmans första besök gällde gruvorna vid Mülheim an die Ruhr, för vilket han t.o.m. antecknat datum: 28 sept. 1746. Man lägger här märke till detaljrikedomen i hans anteckningar icke endast de rent geologiska, utan även om gruvbyggnader, arbetsmetoder, skilda kolsorter med deras priser samt även arbetarnas löner. Han detaljbeskriver t.o.m. arbetsverktygen och ger ett förslag till förbättring av brytningsmetoden i låga arbetsorter.

1) Stenkolsgruvan vid Mülheim an die Ruhr är belägen 1/2 stund (2 km.) öster ifrån byn Mülheim an die Ruhr eller Roehr XX (2 timmar) (10 km.) ifrån Duisburg am Rhein. Tillhörer lantgreven av Hildesheim, som ock är herre till Mülheim samt ett därutmed beläget slott.

2) Jordmånen och fältet över dessa stenkolsgruvor består dels av en ganska fin, gulaktig sand, grellen (?) med något mergel och lera bebländad, dels ock av en grov sand med små kiselstenar och fin sand ibland. Men åkerfälten tyckes överallt bestå av denne fina lerbländade sanden, som här kallas mergel och gräves express på vissa ställen samt kastas på åkrarne vart 2: nat eller 3: die år tillika med något färögdsel.

3) Jord- och bergarterna befanns således uti en brunn eller Pütte, Schacht, som kallades Radstube. N.B. Klafter kallades ock här famnar. (1 Klafter = 2,5 m.)
1:0 Damjorden, die Lagererde, bestod av fin stenblandad sand, varuti understundom träffades skjöl av mergel, 6 klafter djup (15 m).

2:0 En fin och fet, vit valklera, »Klef» till 2 klafter (5 m). Kan brukas till valkning, men är ej så god som den ifrån Flandern, vilken är svartaktig och med rostränder igenomdragen.

3:0 Fin gulaktig, med ockra och leer samt grönaktiga sandkorn bebländad sandjord, grüne erde eller »grün», 4 klafter (10 m).

4:0 En brunaktig sandskiffer, »Braunstein«, gemen 8 klafter (20 m).

5:0 En grov, löst och gråaktig sandsten, »graue stein», 5 klafter (12,5 m).

6:0 Svart, löst, kritaktig skiffer, »dachstein», »oberstein«, bryter sig i parallella lossnar, 5 klafter (12,5 m).

7:0 Stenkolsbädden är ifrån 5 kvarter (7,4 dm) till 2 alnar (11,9 dm) tjock.
»a« näst taksten är glänsande kol av lika materia och konsistens, kallas »Oberkohlen«.

»b« därnäst är gemenligen med en lossna avskild en schöl av lösnare kol. Sedan följer efter »c« en mjuk, löst hornskiffer, »Mittelstein«.

»d« kol, som bestå av strata av skinande och matt utseende om varannan med irreguläre lossnar.

»e« en svartbrun lös hornsten med vågige lossnar.

Under denna »Unterstein« finnes ock 1.2.3 klafter eller mer djupt (2,5—8 m) stenkol, men sällan till den mäktighet att de löna arbetet.

Ett stycke ifrån kolbrunnarne uti ett djupt dike viste sig brunnen av stenkol i dagen. Die Kohlen ziehen sich in die »grünen« med en smal svävande schöl av kolsvart jord, som kallas »der Rab« (korp) uti en vitgrå fet lera av 1/2 alns mäktighet (3 dm) under damjorden, som var ungefär 1 aln (0,6 m) och under svarta jordschölen följe »die Grüne«.

På ett annat ställe viste sig
1:0 Damjorden, 1 aln (6 dm).
2:0 Klef, 1/2 aln (3 dm).
3:0 Brunstein, 5 kvarter (7,4 dm).
4:0 Förmyntnade kol, 5 å 6 tum (1,3 dm).
5:0 Stenkolsbäddarne, höllo beständigt stupande i djupet ifrån SW till NO, ungefär 5 å 6 grader från horizontallinjen. Och visste man intet berätta, att de blivit förtryckte eller någorstådes gått ut. Men blevo stundom övergivne, då de kommo på så stort djup, att kostnaden på deras uppförning blev för dryg.

Arbetet skedde på det sättet, att mitt uti gången över »Mittelstein« uthackades en tvärhand brett en smal sköl, tills man kom an die Lag eller en tvärlossna, då die »Oberkohlen« utbrutos i stora stycken och sedan die »Unterkohlen«. Men det som hackades blev små kol, »klein«.

Ungefär 6 lachter (12 m) emellan lämnades kolen till pelare, 4 å 5 lachter (9 m) i diameter för Dachsteins (Takstenens) uppehållande.

Där kolbädden ej var mer än 5 kvarter (7,4 dm) måste för bekvämlighet vid utfordringen av kolen en väg, die »Ban«, utbrytas ur der »Unterstein« till en
Sven Rinmans resanteckningar, II

halv aln (3 dm) djup. All sten, som brytes uppmuras uti de tomma rum efter stenkolen.

Instrumenter brukas till kolens vinnande inga andra än sådana hackor, som ritningen i brädden (marginalen) utvisar. »a« är stålpiken. »bc« är skaftet, vid »b« brett och sedan vid »c« rund.

Alla de kol, som här vunnos, brukades intet till smide, emedan därtill fordras fasta så kallade »fetkol«, sådana som brytas vid Essen, XX (2 timmar) (10 km) härifrån. Vilka uti elden löpa tillsammans uti en skorpa, sota ej händarna, som de förra. Och då de hanteras flyger därav liksom fina glittrande fjäll. Äro ock helt lätta, lösa och sköra, nämligen de som komma ifrån Essen, men ej de engelske.

Kolen delades eljest härstädes uti 3:handa sorter till priset, dock av lika godhet.
1:0 »Grosse Kohlen« de som voro uti stora stycken, en fot (3 dm) och därunder i kubik.
2:0 »Bandkohlen«, smärre av 1 kvarter (1,5 dm) i kubik och därunder.
3:0 »Kleine Kohlen« var ej annat än stybbe av mindre värde.

Die »Grosse Kohlen« kostade 3 Pistol eller 2 1/2 Riksdaler(?) per eine Karre, som drogs av två hästar. Innehöll 9 malder1 eller 15 3/4 svenska tunnor. Således kostade tunnan ej mer än 1 dlr kmt.

Die »Kleine Kohlen« blevo måttade och försälde med ett mål, som kallades »Streikberg«, som är fyrkantigt: 4 kvarter 2 tum brett, 4 kvarter 5 tum långt och 1 kvarter 4 tum djupt (65×72×25 cm). Är så mycket som 3 Malder och 6 kan­nor (15 3/4 liter)(?).

Eljest försäldes kolen också per läst, då 17 malder räknades på en läst och en malder ungefär till 1 3/4 tunna svenska.

De förnämsta Kohl-Püttten voro här på kolberget, die »Radstube«, »Fucks«, »Croneberg«, »Blumendahl«, »Dicke Bank«, »Adies« och »Ruck«, som alla liggna ungefär ett muskethåll ifrån varandra. Av dessa befor jag die »Radstube«, som berättades vara den djupaste och mest bearbetade.

Schaktet eller die »Pütte« är 30 klafter (75 m) djupt och kolbädden som var 5 kvarter (0,75 m) mäktig till 120 klafter (300 m) i fält utarbetat. Man måste gå här lutad som en skata, dels ock krypa på knäna. Men uti »Croneberg« är kolbädden till 2 alnar (1,2 m) mäktig, så att arbetarne kunna sitta på små stolar och förrätta deras arbete.

Ägaren av detta kolberg är greven av Hildesheim, som det förpaktat, emot var 10:de kol, till 25 st. köpmän uti Mühlheim, vilka låta det för sin räkning bearbeta. Och hava vidare därvid ingen betjäning, än allenast några stycken

1 1 Malder tydligen ungefär 1 3/4 svensk tunna (2 1/2 hl). De förkortade värdebeteck­ningarna äro mycket svårttydda.
gemena (vanliga) karlar, som gå för dagpenning och få 16 å 17 styver om dagen, lika som gemena arbetsfolket, men skola vara som pådrivare och kallas schiktmästare. Desse skola ock observera grevens rätt och infordra var 10:de tunna, men få av honom ingen lön därföre.

Avförseln med kolen är tämligen bekvämlig i anseende till därutmed belägne floden Ruhr. Men nu hade på ett år inga kol blivit bortförde, emedan köpmänerna råkat i process med en herr Ratenberg, som begär högre tull därföre, än förr vanligt varit.

Inga curieuse bergarter funnos här mer än små kuber av pyrites uti en svart lös sten emellan stenkolslagren, uti form av svär, varför den av arbetarne kallades »Degen«, och hölls för kopparmalm.

P. M. Lehn kallades i Mühlheim takskiffer, som mycket brukades. I Zeeland kallades han »Schalie«.

Arbetet till stenkolens vinnande skulle ansenligen förminska, om man uti desse och slike gruvor, i stället för de nu bruklige små handpickor betjänte sig av ett verktyg, som kunde göras i form av de gamles murbräckor. e. g. (exempli gratia = t. ex.) Om »a« är »ober«- och »b« är »unter-stein« kan snart och utan möda däremellan tvingas en stämpel »dd«, där arbetet skall ske. Vilken stämpel har överst en järnkrok, varpå bommen »ef« kan hängas med en kedjestump. Då samme bom, som i ändan »f« är med tungt järn skodd och med en stålspets försedd, kan lätteligen med handtaget vid »e« föras av och an och med stark fors stötas emot kolen uti »c«, varigenom en stör skulle ofelbarligen göra så stor effekt som kanske 100 hugg med en liten hacka, varigenom arbetarne nu oförlikneligen tröttas, så att de ock här vid Mühlheim ej kunna arbeta längre än till middagen.

Den svarta jorden eller der »Rab« är densamma, som finnes vid Huusberg uti Vestergötland under namn av Tuhsch och Svartkrita.

Stenkolsgruvor äro vid Aachen åtskillige till 1½ å 2 timmars väg därifrån (6 å 10 km). De bekantaste äro die »Stadskohlberge« an das Herrenberg, varest leichte eller »Brandkohle« finnas, som till bränsle i stället för ved brukas och vid Escwiller varest die »fette Kohlen« brytas, vilka till smide brukas.

På det förra stället befors den 12/23 december 1746, den största gruvan, som kallades die »Tenit« och observerades följande:

1:o Berget består i dagen av åtskillige lager, dels tjock och sandig, dels tunn och hornaktig skiffer.

2:o Under detta skifferberg står kolfloen (kolflöten) på kant och har sitt strykande uti öster och väster, fallande i donlåge på djupet ungefär 30 grader ifrån perpendikulärlinjen. Har emot söder liggande vägg och är överallt
Sven Rinmans reseanteckningar, II

4 fot (1,2 m) mäktig. Den liggande väggen kallas »der Stein» och består av en svartaktig sandsten, beklädd med en hal hornskiffer. Och den högnande, »der Wand» av en svartbrun fast sandskiffer.

3:10 I början har kolfloen stått något mer perpendikulärt till ungefär 47 famnar (83 m) djup, varest den avbrutits och kastat sig flack emot nordan till ungefär 20 lachter (40 m), varest den igen återtagit sitt förra stupande och mäktighet. Och är nu ifrån besagde flacka fält eller plan avsänkt till 59 lachter (118 m) och således hela gruvan 106 lachter (212 m) djup.

4:10 Bemäste kolflo är på 100 lachters (200 m) djup till 350 lachter (700 m) i fält utbruten. Och har man mot väster ej något att gå längre för tillstötande vattuläckor. Men emot öster fortsättes arbetet såväl i fält som ej i höjden borttaga kolen till 30 fot (8,9 m) ifrån sohlan.

5:10 Uti hosstående figur skall »AB» föreställa kolfloens stupning till 47 lachter (94 m), varuti 2:ne schakt utmed varandra är avsänkta. Uti det ena sker uppfordringen med en stor hästvind ifrån planen »BC«, vartill uppfordringen sker med 6 handvindar, ungefär 9 å 10 lachter (18 å 20 m) emellan vardera.

Uti det andra schaktet är en vattenkonst inrättad, som på besagde plan har 2:ne brott och går med tvenne pumpar till djupet av gruvan. Men under vägen upphämtar den med 3:ne andra pumpar det vatten, som vid planen uti en reservoar inledes.

6:0 För väderväxlingens skull är på den understa kolfloen igenom berget nederslaget ett annat perpendikulärt schakt »EC» och däröver murat ett luftrot av sten ungefär 30 fot (9 m) högt, varuti om sommaren eldas när väderväxlingen eljest intet är tillräcklig. Detta luftschakt är ända neder till botten av gruvan murat, och har på bågde sidor 50 vinddörrar, 1 å 2 klatrer (2 1/2 å 5 m) emellan vardera, som efter omständigheterna öppnas. Men om vintern stå de merendels slutne.

7:0 Arbetet skedde korteligen således. Ner vid Sohlan av kolbädden gjordes en liten ort »B« (fig 1), varvid die »Loßhache« (fig 2) brukades. Sedan högg os de överhängande kolen lösa »A« vid liggande med ett instrument som kallas die »Beckel« (fig 4) liknande ett årder järn, dock något grovare, 6 kvarter (9 dm) långt, 2 finger (3 1/2 cm) brett och allenast 1/2 finger (0,8 cm) tjockt, med ett runt skaft, smitt av ett stycke.

En sådan lossna föreställer vid »ab«. Däröver vid »e« sattes en kil, »Handbesen«, kallad (fig 5). Och med der »Fäustel« nederkilades hela stycket »A«, varigenom de stora kolen vunnos. Och på sådant sätt kontinuerades till 30 fot (9 m) i höjden, då band lämnades.

8:0 Uti denna gruva voro 19 arbetare, som hade deras skikt från kl 5 om morgonen till 3 eftermiddagen och fingo därföre en »Kopfstück« eller 6 skillingar svenska.

9:0 De grova kolen säljas efter vikten och kunna om dagen 28.000 skålspund brytas. 1.000 skålspund gäller på platsen 6 permicioushilling och en styver, som är 7 daler 8 öre kopparmynt, men kostar även så mycket uti frakt till staden.
De små kolen säljs »mit der Hund», som är en liten släde 28 tum (69 cm) lång, 19 tum (47 cm) bred och 11 tum (27 cm) djup, vilket mätt kostar 2 pitermenchen eller 9 öre kopparmynt på platsen. Dessa kol blandas med lera och vatten. Och göras därav klumpar, som med de grova kolen brännas.

10:0 Gruvan tillhörer staden och arbetas för dess räkning. Tillbringar ock änselig inkomst. Arbetet sker allt vid ljus, vilket staden måste bestå, var karl 6 ljus om dagen.

De andre utmed Tenit liggande små kolgruvor arbetas av bönder för ett ringa arrende till staden. Hela berget häromkring är fullt med kol, som med dess »Rab» allestädes i dagen visar sig. Kolen utvägas och mätas av en kolskrivare, som nu för tiden var Hr. Gibels.

Eschwiller.

3 timmar från Aachen, tätt invid lilla staden Eschwiller, finnes en stor myckenhet kolgruvor, och på ett litet distrikt över 50, som nu arbetades, och varest i synnerhet smidkol vinnas. Arbetet drevs ock tämligen starkt, natt och dag. Dock var här ingen kolgruva över 50 famnar (89 m) djup.

Die »Aue» och die »Neue Pumpe», varest 2:ne vattenkonster voro till vattenuppfördeningen, särdeles vid die »Neue Pumpe», nyligen och väl inrättade, med ett vattenhjul av 31 alnars (?) diameter och dubbla vevar.

Observerades, att pumpstövlarne där voro av gjutet tackjärn, 6 kvarter (9 dm) långa och 10 tum (1,5 dm) i diameter. Brukades ordinära pumpämbara, men där pumpstockarne allenast voro av trä och ej fodrade, brukades särdeles (särskilt) pumpämbara som i fig. »AA» är några tjocka läderlappar, på varannan lagde. »BB» är träklotsen, som formerar ämbaret och har 4 hål »DD» etc, Varen genom vattnet uppstiger, då läderlapparne »AA» giver sig upp, när pumpen går ner, men täppas vid uppgåendet. »CC» är pistongen.

Till väderväxlingsbefordran uti kolgruvorne brukades att uti väderväxlingschaktet hänga en kittel med upptänd kol till ett visst djup.

I Aachen räknades i synnerhet 3 sorter kol:
1:0 »Grosse Kohlen» i stora stycken
2:0 »Marsperang»(?), små och stora tillhopa
3:0 »Gris», helt små kol, som blandas med blöt lera och göras till klumpar, att bränna med de andre.

Liége.

Vid Bain, när intill Cheiné, 2 lieus (9 km) från Liége finnes stenkol, som egentligen tjäna till glödgningarne vid skärverken och ej så väl till smide. De säljs för en Rdr(?) charret (kärran), och kunna svärligen åtskiljas från ordinäre
Sven Rinmans reseanteckningar, II

Vid förbemältte Bain finnes ock en väderkvarn, som uppfordrar vattnet med 2 pumpar på 80 famnars djup (142 m). Denna maskin har 4 vingar som ordinärt med duksegel. Vardera vingen är 40 fot (11,9 m) lång och 5 fot (1,5 m) bred. Går tämligen väl, men är dock underkastad att som oftast brytas sönder.

Stenkolsfloden stod här på kant. Vid maskin var ej något nytt att observera. Stenkolsgruvorna i Lyckerlandet (Luikerland) äro i synnerhet uti och omkring staden Liége till stor myckenhet såsom uti förstäderna le Faubourg de S:t Laurent, S:t Marguerite och S:t Gilles. Och på landet däromkring till 1 à 2 mils distans är i synnerhet remarkabel Seraing, un lieu (4,5 km) de Liége, varest biskopen har ett palats.

Hästädes fås de bästa och de mesta stenkolen, som säljas efter vikten och kallas les Houillers de Meuse, emedan gruvorne äro tätt invid floden Maas.

Sedan äro bekante orterna Herstal, Ans, Gennep (Jemeppe) och Ugrei (Ougrée), förutan många flera och snart oändelige, små stenkolsgruvor, emedan hela denna terrängen och även under själva staden tyckes vara uppfylld med stenkol.

I gemen finnas kolen uti svävande floer eller lager, »les vaisins, som merendels äro horisontelle, men stundom något inklinerande belägna, den ena under den andra med 10 à 12 famnars (18 à 21 m) berg emellan. Varandes den överste de sämsta och minsta, men på djupet tilltaga de uti mäktighet och godhet.

Bergarten finnes likaledes uti lager, bestående uti en skiffer, som i början är grov och sandig av grå färg. Men på djupet blir den mer och mer fin samt svart och uti grovare lager, så att den äntligen förvandlar sig uti fast klyft, dock utan att tilltaga uti hårdheten.

Näst intill stenkolen följer en brunaktig lösh skiffer och däribland även uti själva stenkolen en svart lösh, som sortar händerna.

Stenkolen delas av arbetarne egentligen uti 2:ne sorter nämligen:

»Le Houille», som brytes uti stora stycken och egentligen av bryggeri, brukas, pour brasser la biere (brygga öl) och

»Les Charbons», som äro de små stycken samt stybbet, vilket allmänt nyttjas dels av smeder dels ock uti hus sällan till bränsle, då stybbet med lera blandas och till vissa klumpar hopgöres.

I anseende till kolens lager delas de uti 3:ne sorter

1:0 »Le mousoiroiit» kallas le vain premier, det första kollagret, som uppfinner varandes gemenligen ej över 1 fot (3 dm) mäktigt och innehåller de sämsta kolens.

2:0 »Mine de Bom» eller le vain second.
3:0 »Besloin» eller la vain troisième et quatrième, om den finnes, varandes desse de bäste kolen och mäktig till 2 à 2 1/2 fot (5,9 à 7,4 dm).

Stenkolen skola här först blivit uppfunne år 1200 genom en besynnerlig uppenbarelse, som de lättrogne sig inbilla.

Alla stenkol, som finnas omkring Liége äro av den sorten, som tyskarne kalla »fette Kohlen«, vilka innehålla mycket inflammabile och ett bitumen montanum samt petroleum, varför de ock vid brännningen giva en tjock vit gulaktig flamma med mycken rök samt balsamisk lukt.

Variationer observeras följande allmänna sorter:

1:0 Glänsande, som ej bryter sig uti vissa figurer. Faller lätteligen sönder i små smulor.

2:0 Av matt och ej särdeles glänsande superficies (yta). Bryter sig uti figura romboidala och trapezoidea. Har ock gemenligen små ådror uti sig av de glänsande kolen.

3:0 Skiffrig med vågige lameller, mycket tung. Innehåller ej så mycket inflammabelt och lämnar efter brännningen en vitgul lös Talksten, i lika form och storlek, som stenkolet förut varit. Duger således ej till smide.

N. B.Nota characteristica pa de magre stenkolet, »leichte Kohlen«, som särdeles finnas vid Mühlheim an die Ruhr, och allenast till bränsle, men ej till smide kunna brukas, är den, att de ej så lätteligen fatta låga, och brinna änteligen med en vit något blåaktig flamma samt giva en sulfurisk, något suffocant (kvävande) lukt och ej särdeles rök. Lämmande efter utgödningen en slagg i samma form som stenkolet, allenast sönder sprucken till små kantiga stycken och mer hård, men med lika glänsande superficies (yta) och svart färg, som stenkolet förut varit.

Schaktet »le Burr» perpendikulärt 34 tois eller famnars djupt (59 m), varuti observerades 3:ne vain eller kolflor, cirka 10 famnar (18 m) emellan vardera. Den första allenast 1 fot (0,3 m) mäktig och de andra något mäktigare.

Den kolfloen som nu arbetades var 2 1/2 fot (7,5 dm) mäktig och till 100 famnar (178 m) i fält, redan utbruten, merendels horisontellt doserande sig allenast något litet emot dalen och den andre först nämnde gruvan, dit vattnet leddes med en stoll, »un vain«.

Ifrån denna kolflo var ett nytt schakt nederslagit till 7 famnars (12,5 m) djup.
att söka en ny kolflo, som blivit upptäckt med den vanliga jordborren, »du terre«, varav man sig här betjänar. Vid vilket instrument intet var att observera mer än som förut allmänt bekant är. Arbetet skedde ock på lika sätt som vid Mühlheim an die Ruhr anmärkt är.

Gruvan drives natt och dag. Således ock ombytes arbetarne alla 6 timmar, på vilken tid var karl har 14 sous (0,70 franc). Men de små gossarne, som släpa fram kolen, arbeta 10 timmar och hava därför 8, 10 å 12 sous.

Uppfordringen sker med hästvind, »Harna«, som drages av 4 hästar, med 3 famnars (5,5 m) långa armar. Och de lastar kolen, »les Charbons«, uti en 4-kantig kista, »Confort« kallad, som innehåller 2 500 skålpund (1 060 kg) stenkol. Men de stora kolen, »les Houillers«, laddas på en annan maskin, gjord som en vågskål, »Panje« kallad, varpå 4 000 skålpund kol laddas. (1 700 kg).

De bästa kolen äro »les Houillers de Meus«, vilka kosta 2 1/2 å 3 Ecus per Charret å 4 000 skålpund (1 700 kg), så mycket en häst kan draga. Men en »Charret ordinaire« kol kostar 10 å 12 schillingar.

P. M. Utmed uppföringsschaktet är ett vindschakt, med en 3 famnars (5,3 m) hög skorsten, »le Soupirat« kallad.

N. B. Prinsen eller biskopen av Lüttich har alldeles ingen revenue av desse kolgruvor, som alla drivas av intressentskap, merendels med ringa förmån, men till stor nytta för landet.

Som synes har tydligen Rinman besökt kolfyndigheterna med öppna ögon och gjort talrika sifferdetaljerade anteckningar, med all sannolikhet för att dessa skulle kunna tjäna till ledning för en utökad kolbrytning i Sverige.

★

Avsikten är att i en tredje och sista uppsats något redogöra för Rinman's metallurgiska anteckningar under den utländska resa, som han företog 1746 och 1747.
LINBEREDNINGSVERKEN
I HÄLSINGLAND
UNDER 1700-TALET

Fil. lic. Irma Åström behandlar här linberedningsverken i Hälsingland, framför allt ur teknikhistorisk synpunkt.
Linberedningsverken har intill våra dagar varit typiska inslag i landskapsbilden i Hälsingland. Där de lågo sida vid sida utmed vattendragen, ofta 10—15 i en och samma bäck, observerades de också av varje främling som i äldre tid passerade genom landskapet. »Hvar som hälst någon flod var, drivs ett hjul, som dref up en hammar, att bulta lin med . . .», omtalar Linné redan år 1732 från sin resa genom Hälsingland.¹) Och 1834 säger t. ex. Jonas Engström: »I hvarje bäck står en maschin för linbråkning och skäktning, och i hvarje stuga dåna spinnrock och vävstol. Både män och kvinnor sysselsätta sig här med linberedningen, som är Helsinglands förnämsta binäring.»²)

En av de viktigaste förutsättningarna för denna utveckling var de ovan nämnda linberedningsverken, vilka genom att mekanisera vissa moment i linberedningen väsentligt bidrog till att spara tid och arbetskraft. Linberedningsverk var en specialitet för Hälsingland.

Då flera modeller av dylika verk, vilka ingått i Kungl. Modellkammaren, blivit bevarade till vår tid, och nu finns i Tekniska Museet skall med stöd av dessa och i litteraturen bevarade uppgifter behandlas linberedningsverkens tillkomst ur teknisk-historisk synpunkt.

De hälsingska verken ha tidigare behandlats i en uppsats av Nils Keyland, tryckt i Fataburen 1921. Modellkammarens modeller voro troligen icke kända av Keyland. Sedan de numera i restaurerat skick finns i Tekniska Museet, är det därför möjligt att på en del punkter komplettera och revidera hans uppgifter.

Att bereda lin är en lång och mödosam procedur. Innan linet blir dugligt att spinnas måste det undergå en lång rad av behandlingar. När linet ryckts upp skall först frökapslarna avlägsnas. Detta kallas

Genom att man i stället använder linberedningsverk underlättas de båda tyngsta momenten i arbetet, nämligen bråkningen och skäktningen, för att inte säga tre, då den mekaniska linberedningen därjämte gör torkning av linet i ria eller bastu överflödig.

Vattendrivna linkvarnar av liknande slag, dock endast för bråkning av lin, förekommo i Tyskland och England redan på 1600-talet. Det är naturligtvis möjligt att Broman fått impulsen till sin uppfinning härifrån, men lika troligt är, att han som Sigurd Erixon förmodar, fått idén från de »bokverk» som tillhörde de mekaniska verken vid hyttor och i vilka malmen krossades.

Olof Johan Broman var född i Rogsta sn i Hälsingland år 1676. Han blev fil. mag. 1703, rektor och kyrkoherde i Hudiksvall 1728, där han dog år 1750. Året 1700 det är då den första linhammaren sattes upp, var han ännu student i Uppsala, men sommaren tillbragte han hemma i Hälsingland. I sina dagböcker för detta år antecknar han: »å hela sommaren reste jag omkring nästan i hvarje winkel, från Helsingland at leta, söka up, alt hwad jag kunde få, som för mit fos-
Detta ger oss visserligen ingen direkt ledning, men det visar att han just vid denna tidpunkt i hög grad var inriktad på sitt eget land och dess möjligheter och att han som den äkta rudbeckian han var, hellre sökte och fann sina förebilder inom landets egna gränser förefaller därför vara naturligast. Med känndom om Bromans mångsidiga begåvning, han var bl. a. utom teolog även läkare, naturvetenskapsman, etnolog och författare, vill man gärna ge honom äran av att själv ha konstruerat vårt första linberedningsverk. De vid denna tid i Tyskland förekommande linkvarnarna vоро dessutom försett med perpendikulära stampar och inte med hammare som Bromans, vidare säges klart och tydligt att de endast brukades för att före bråkningen mjuka upp det rötade och torkade linet.10)

En sak är Broman emellertid vid denna tid absolut ensam om: han var den förste att söka åstadkomma ett verk gemensamt för både bråkning och skäktning av lin, även om det inte lyckades honom att fullkomna denna inrättning.

Ett linberedningsverk i vår tids mening består av en eller flera hammare eller stampar samt ett eller flera skäktjul, vilka vanligen drivas av ett vattenhjul. I det följande kommer termen emellertid för enkelhetens skull även att brukas om de tidigare inrättningar under 1700-talet om vilka man strängt taget inte alltid vet, om de voro fullständiga linberedningsverk eller endast mekaniska linhamrar, respektive linstampar. Själva ordet förekommer så vitt vi kunnat finna första gången hos Carl Petter Ström i hans Försök till en Beskrivning öfver Färla socken, tryckt i Gävle år 1827. Där säger han bl. a. på tal om vattendragen i socknen: »Uti alla dessa Elfwar och Äar äro åtskilliga Wattuwerk upförda såsom Tröskar, Sågar, Qvarnar och Linberedningswerk.»11)

För att göra det lättare att följa linberedningsverkens utveckling, skall i det följande dess viktigaste beståndsdelar: vattenhjul, hammare, stamp och skäkt behandlas var för sig.

Vattenhjulet.

De sedan gammalt vid mjölkvarnar, sågar och andra verk använda vattenhjulen har utan förändringar överförts till linberedningsverken, där såväl överfalls-, bröstfalls- som underfallshjul förekommit, allt efter omständigheterna.

Den äldsta uppgift vi har om en vattenhjulsdriven hammarinrättning använd för linberedning är som förut nämnts Bromans egen: »At här kunna lätta thetta tunga arbete med klappandet eller dängandet
Linberedningsverk

(bråkningen), war jag then förste här i orten som år 1700 upsatte en Ljnhamare, jag menar et hjul uti ena wattruränna som förde up och ned en hamare, giorder af trä», säger han.12)

År 1732 ser Linné som förut omtalats dessa hammare på sin resa genom Hälsingland och gör även en enkel skiss av dem, för övrigt den äldsta avbildning man känner av ett sådant verk.13) Linné återger en inrättning bestående av en hammare med en träkubb eller sten som underlag. Bakom hammarskaftet synes hjulaxeln med knaggarna, vilka när verket sattes igång lyfta hamaren upp till en viss höjd, varefter den åter faller ner av sin egen tyngd.

År 1749 omnämnes linhamrarna i Pehr Schisslers »Hälsinga Hus- håldning» på följande sätt: »Herr Probst Bromans upprättade och upfundne Linhammare är till Linets dängande (bråkning) både nödig och nyttig, samt väl inrättad ty med thensamma lises Arbetarne ganska mycket, hwarest tillgång är uppå Bäckar och Strömmar.»14) Denna lilla notis upplyser oss om att det än så länge endast är fråga om vattendrivna linhammare och ej ett fullständigt beredningsverk.

I den samtida ekonomiska litteraturen omnämnes linhamrarna därefter gång på gång, men då uppgifterna icke på något sätt bidrar till karakteristiken kunna de här förbigås.

Kyrkoherden Nils Wetterstens skildring från Forssa och Högs socknar år 1761 lämnar emellertid två nya värdefulla upplysningar. Då han redogör för Forsa sockens strömmar och åar uppräknar han bl. a. följande: »... 2:0 Prästegårdsströmmen, hwilken upsattes 1740, med grannars til- hjälp ifrån Wigstad, Hegestad och Bäck, mågta nyttig, när ingen brist är på watn både för denna och för qwarnen. 3:0 Lundströmmen sudost ifrån kyrkion ... 2 dubbla linhamrar, den ena på södra den andra på norra sidan om strömen.»15)

Här får man dels veta att man numera använder dubbla linhammare, dels att dylika varit i bruk åtminstone sedan 1740. På två av de i modell bevarade verken komma vi att finna dylika dubbla hammare.

Prosten Lenaeus omnämner i Delsboas Illustrata från år 1764 kort och gott 8 st. »Dängehamrar» i Stömnäsån, »Med hwilka skäfven ifrån det torkade linet utbultas».16)

Samma år, d. v. s. 1764, finner man i Inrikes Tidningar nr 88 en artikel av den förut citerade Pehr Schissler, son till kyrkoherden i Järvsö Pehr Schissler och schäfferidirektör i Gävleborgs och Sunds-

Schissler berättar här att han på sin gård i Järvsö lyckats göra om linhammaren för att drivas av en häst. Dylika hästdrivna verk omtalas därefter gång på gång jämsides med de vattendrivna hamrarna intill 1800-talets mitt, då de åter synas försvinna.

Det vattendrivna stampverket anses vara en uppfinning gjord i Tyskland i början av 1500-talet. Man har t. o. m. velat göra gällande, att den skulle ha gjorts år 1505 av en namngiven sachsisk adelsman, Sigismund von Maltitz.19) Därifrån har den så småningom funnit vägen till vårt land.

Ett linberedningsverk kan för bråkningen vara försett med antingen hammare eller stampar. På grund av denna skillnad har man rätt att tala om två olika typer av linberedningsverk: hammarverk och stampverk.

Här har tidigare endast talats om verk av hammartypen, den typ som Broman konstruerade, och som sedan under hela 1700-talet var
den ojämförligt vanligaste. Men mycket snart rekommenderas även verken med stampar, nämligen av den förut nämnde direktören vid Flors linnemanufaktur Stephen Bennet, i hans bok »Lins Planterande, Beredande, Spinning Wäfnad och öfriga beredning», Stockholm 1738, i vilken han sammanfattar sina inträck av linberedningen under enresa i Tyskland.

De stampverk han beskriver är av samma typ, som förekommer i de hannoveranska länderna där de varit kända sedan 1600-talet. »De bästa slags Linstampar», säger Bennet, »är med trena Hamrar, hvaraf den medlersta är något större och tyngre än de andra, alla stå perpendiculart öfwer sin sten, som bör vara slät och jämn. Trena Personer förrättar arbetet med fyra knippor i sänder . . . Och som dubbelt så mycket arbete förrättas under sidhamrarna som under medelhammaren, så kunna tvenne personer göra så mycket arbete som fyra med de stampar jag sedt här i Helsingeland.»

Det råder alltså inget tvivel om att det är Bennet, som introducerar linstamparna i Hälsingland. Men det tycks dröja in på 1800-talet, innan de blev använda. Endast en gång till under 1700-talet finner man dem omnämnda i Sverige, nämligen av Olof Törnsten år 1753, som kort antyder: »Andra krossa det (linet) under watnhamrar eller stampar.»

Broman själv säger om denna uppfinning: »Att kunna lätta thetta tunga arbete (skäktningen) såsom thet förra af Dängandet, gjorde jag väl ett försök med et watnhiul, hwilkets fiädrar lyftade och dref skakan (skäktkniven) med större force än någon Mans Arm, men som Skakfoten (skäktfoten) med achtsamhet borde wittas netto fram och åter, i widrig händelse stodo fingren och handen uti faran, ty wele thet ensinta Folcket intet gå ifrå gamla wanan, som mycket här i Landet regerar, hvaröfwer uti thetta mit förmäle klagas.»

Som Keyland också framhåller, är den skäktmaskin, som Broman här förordrar inte identisk med det sedan allmänt förekommande skäkthjulet.

I Hushållnings Journal för September år 1779 finner man emellertid en maskin avbildad, som nära överensstämmer med den av Broman

Om denna skäktmaskin i verkligheten haft någon betydelse, är nu svårt att avgöra, men det är väl knappast troligt. Den kan emellertid säkert gälla som bevis för att skäkthjulet vid denna tid ännu inte var allmänt känt, då bilden är införd i en av tidens mest kända hushållningsjournaler.

Beträffande Bromans eget skäktverk klagar han 1735, som vi sett, över att folket inte ville acceptera hans uppfinning. Men 1749 säger Pehr Schissler i »Hälsinga Hushåldning» om densamma: »Med icke mindre förstånd är hans (prosten Bromans) upfundne Strömskjäkta inrättad. Herr Probsten säger väl uti sin beskrifning om Linet... att det ensinte folket i Hälsingland ej welat gå ifrån sin gamla skäktewana med händerna, hälst then in Strömmen inrättade Skäktfoten borde ryckas fram och åter therwid finger och handen kunde stå i fara, men sedan the något widare ransakat thenna invention, och funnit then mycket lisa theras arbete, ser man nu på åtskillliga ställen att sådane hafwa kommit i bruk.»

Någon större spridning för maskinen kan det emellertid knappast ha varit fråga om. Olof Törnsten nämner den t. ex. inte i sin bok om »Linsädet i Nätra sockn», 1753.

Inte heller i sin utförliga skildring av linhanteringen år 1770 omtalar Törnsten någon skäktmaskin, däremot säger han här på tal om skäktningen: »Jag får ej gifwa förslag på en machine, som jag alleast har i modell, efter den ännu icke blifwit applicerad til watnwerk, dock hoppas jag framdeles kunna derigenom uppte för almenheten något som skal göra åtskillig nytta, mäst til besparing af många 1000:de dagswerken.»

»Här möter oss i skrifterna», säger Keyland, »åter en svensk prästman sysslande med lösningen av den mekaniska linskäktningens problem — om på grund av okunnighet om Bromans förarbeten eller av åstundan att söka åstadkomma något bättre än mästaren lämnar den korta notisen ingen klarhet om.»

Så är vi återigen framme vid Flintenbergs förut citerade notis från Mo sn år 1785 om en »commod och artig både Trösk- Bråk- och Skäck- samt Slipmachine», d. v. s. vår äldsta uppgift om ett komplett linberedningsverk.

Tre modeller och en beskrivning.

Verkliga bevis för skäkthjulets förekomst under 1700-talet får man först genom 3 st. i modell bevarade linberedningsverk, varav ett tillhör Tekniska Museet med nr 1.335 och 2 st. Kungl. Lantbruksakademiens samlingar med nr 1.640 och 1.641, vartill kommer en utförlig beskrivning av ett verk från år 1799.

Denna modell har liksom de båda övriga ursprungligen tillhör Kungl. Modellkammaren. Denna grundades av Christopher Polhem år 1697, som en teknisk läroanstalt och för att visa uppfinningar gjorda inom jordbrukets, industriens, bergshanteringens m. fl. områden. Efter väl kända öden var den vid 1700-talets slut en av de främsta sevärdheterna i Stockholm. 1813 överfördes modellerna till Kungl. Lantbruksakademien och uppdelades 1826 mellan denna och Teknologiska institutet, nuvarande Tekniska Högskolan. Hundra år senare överfördes Tekniska Högskolans samlingar till Tekniska Museet, medan Lantbruksakademiens del av samlingen numera förvaras i akademiens museum.

Modellen bör vara gjord vid 1780-talets mitt. Flintenberg har an­ sett den av honom nämnda maskinen värdig en särskild not i hans akademiska avhandling, vilket sannolikt måste betyda, att han här lagt märke till något som för honom var nytt och ovanligt. Slut- ligen måste man konstatera att beskrivning och modell visa påfallande överensstämmelser.

Kyrkoherde i Mo sn vid denna tid var Samuel Berg (1728—1805), länsmansson från Rengsjö och sedan 1780 kyrkoherde i socknen. Den skickliga lösningen av konstruktionen vittnar om en särpräglad meka- nisk begåvning. Det förutjäna even att framhållas, att denna typ av mekaniskt tröskverk icke heller tidigare varit känt. Sedan man gång på gång kunnat konstatera, att mekaniska sysselsättningar vid denna tid var ett slag hobby för lärda män, vill man nog med Flintenbergs ord i minnet (att nuvarande kyrkoherden på prästgårdens ägor in- rättat en maskin av just detta slag) gärna ge kyrkoherden själv, Sa- muel Berg, äran av att ha konstruerat vårt första funktionsdugliga linberedningsverk med skäkthjul. Denna teori får ytterligare stöd av upplysningen, att Samuel Berg som ung student under några år var informator hos direktören Stephen Bennet vid Flors linnemanufaktur, för dennes son, vilket utan tvivel måste ha stimulerat hans intresse för linhanteringen.27) Själva skäkthjulet hade emellertid inte Samuel Berg till upphovsmann, utan hade som vi skola se flera år dessförinnan konstruerats av en annan person.

Beträffande de båda modellerna i Lantbruksakademiens museum är tidsbestämningen betydligt ovisse. För båda är emellertid vid den kortfattade beskrivningen i katalogen fogat tilläget: »1700-talet.» Varför finns de då inte med i Modellkammarens inventarier varken från 1779, 1795 eller 1801? Denna fråga skall vi i det följande för- söka att besvara.
I Lantbruksakademiens katalog, vilken måste vara en avskrift av en nu förkommen förteckning över Modellkammarens samlingar, beskrives modellen på följande sätt: »Två linklubbor el. bråkhammare samt skäckt att drivas medels linledning eller kuggväxel. Klubbor och kubbar släta, de första lyftas av knaggar på drivaxeln för skäkten — liknar föregående. 1700-talet. (K. M. A. 121.)«.

Varför modellen inte finns upptagen i Modellkammarens inventarier, fast den av allt att döma måste vara från 1700-talet och sannolikt från tiden före 1785, får man följande förklaring på. I J. A. Norbergs inventarium (sid. 56), som trycktes år 1779, säger han nämligen: »Utur detta Inventarium äro flere Modeller utslutne, som dels befunits icke vara Mechaniske . . . dels ansedde såsom onyttige och icke värde att här upptagas.«

Till de modeller, som Norberg betecknat som »onyttige och icke värde att här upptagas« måste givetvis då också räknas den första modell vi äga av ett linberedningsverk med skäkthjul. Norberg, som själv var uppfinnare, bör ha konstaterat, att modellen i det stadium den befann sig, inte var användbar. För Hälsingland däremot blev denna uppfinnning en av de betydelsefullaste som gjorts i vårt land. Beträffande dess upphovsman behöver man numera inte heller tveka. Det kan knappast vara någon annan än sedermera kyrkoherden i Torsåkers sn i Ångermanland, Olof Törnsten.

Olof Törnsten var född i Nättra sn i Ångermanland år 1729. Han blev student i Uppsala 1750, där han tre år senare disputerade på en
avhandling »Om Nättra Sokns Lin-säde i Ångermanland». På offentligt uppdrag företog han 1763 en studieresa till Polen och Lifland för att studera linhanteringen. Efter hemkomsten antogs han som notarie i Kommerskollegium. 1769 tillträdde han en befattning som kollega vid Frösö trivialskola i Jämtland. Härifrån flyttade han 1772 som nuutnämnd kyrkoherde till Torsåkers sn i Ångermanland, där han avled 1787.28)

I den förut citerade artikeln »Underrättelser om Lins och Hampas Såning etc.» från år 1770, säger Olof Törnsten i mer eller mindre förtäckta ordalag att han konstruerat en skäktmaskin »som jag allenaest har i modell, efter den ännu icke blifit applicerad til watn-werk, dock hoppas jag framdeles kunna derigenom uppt»e för almänheten något som skal göra åtskillig nytta, måst til besparing af många 1000:de dagswerken».29)

Det är Törnsten var sysselsatt med konstruktionen av den här omnämnda modellen, nämligen år 1769, befann han sig i Jämtland. Vid samma tid var en annan person, som nedlagt stora förtjänster om vår linhantering, nämligen P. A. Örnsköld, landshövding i Västernorrlands län dit då även Jämtland räknades. I hans »Berättelse om Wester-Norrlands Höfdingedöme til Riksdagen år 1769», säger han bl. a. på tal om linhanteringen: »Til arbetets minskande wid Linhanteringen har jag til bultningens (bråkningens) indragande upmuntrat Inwånarna at inrätta Lin-hamrar . . . Til Dragningsarbetets (skäktningens) besparande, at werkstälta någon inrättning, som går med wattn eller häst. Den första af dessa anstalter har redan på många ställen blifvit widtagen, och de senare förmodar jag, ock efterhand komma igång, til åtminstone 100.000 Dagswerkens eller en Tunna Gulds årlig besparing eller winst i Riket.»30)

Enbart av de likartade formuleringarna hos Törnsten och Örnsköld framgår, att de inte kunna ha tillkommit oberoende av varandra. Men även en annan sak framgår, nämligen att Örnsköld just vid denna tid målmedvetet uppmuntrade till uppfinnningen av en ändamålsenlig skäktmaskin driven av vatten eller med hästkraft, samtidigt som han väl enligt tidens sed utfäst en penningbelöning åt den som lyckades härmed.

Kanske har Örnsköld i detta ärende direkt vänt sig till Törnsten, den tidens främste expert på linhanteringsfrågor, och vilken han kände sedan gammalt. Det var t. ex. just på initiativ av Örnsköld som
Törnsten under åren 1763 och 1764 reste omkring i Jämtland och Medelpad för att undervisa om linnekötseln.

Tanken ligger alltså nära att förknippa Törnstens namn med uppfinnningen av skäktthjulet, en tankegång som för övrigt även Keyland är inne på. Keyland känner emellertid inte till något skäktthjul före år 1820 (det av Tamm omnämnda från Uppland) varför väl tidsavståndet förefallit honom för långt för att våga något påstående.

Man kan emellertid nu med största sannolikhet datera Tekniska Museets modell av linberedningsverk med skäktthjul till år 1785. Dessutom har man av ovan anförda orsaker starka skäl att förmoda, att Lantbruksmuseets modell nr 1.641 är äldre än denna. Till detta kommer att Törnsten såsom den störste kännaren på området inte känner någon skäktmaskin med hjul före 1770. Inte heller litteraturen dessförinnan omnämner några skäktmaskiner utan uppvisar endast år 1779 den på Bromans idé byggda skäktinrättningen. Lägger man därtill Örnskölds ord om en inrättning för skäktningarbets besparande, vilken han förmodar snart skall komma igång, och den ifrågavarande modellen därtill just saknar vattenhjul, kan man, fastän bindande bevis ännu saknas, likväl nästan med visshet våga påstå, att Olof Törnsten, därtill uppmunrad av landshövding Örnsköld, var den som år 1770 konstruerade det första skäktthjulet och att det förmodligen är hans egen modell av detsamma, vilken nu som nr 1.641 förvaras i Lantbruksakademiens museum. Därefter har hans uppfinning övertagits och fullkomnats av andra.

Den Flintenbergska notisen från år 1785 omtalar som förut nämnts även en sak, som har betydelse i det här sammanhanget, nämligen att man här för första gången finner en kombination av flera slags vattenverk under samma tak. Ett kombinationsverk av detta slag är också den ifrågavarande modellen, som kan kombineras med en kvarn. Därmed har vi för dess bestämning i tiden fått en gräns bakåt:
Äldre än från 1780-talets mitt kan den inte vara. Bortsett från katalogens notis att verket är från 1700-talet finns det emellertid mycket annat som talar för detta: de dubbla linhamrarna, det enkla skäkt-hjulet o.s.v.

Ä andra sidan finner man vid jämförelse med Tekniska Museets modell tydliga tecken på utveckling. Framför allt kan man peka på en väsentlig nyhet, kugghjulsöverföring, som här delvis har börjat uttränga den gamla linledningen.

En rörelseöverföring med kugghjul och trilla var ingen nyhet i och för sig, men på modellen finner man för första gången en sådan använd vid ett linberedningsverk, en sak av allra största betydelse, då detta system troligen mycket snart därefter uttränger alla andra vid byggandet av skäktverk.

Dessutom förtjänar ytterligare två detaljer på denna modell att observeras, vilka för övrigt båda tyda på ett främmande inflytande. Det ena är tandhjulet på hjulaxeln, som här ersätter de vanliga knag-garna. Ett tandhjul av detta utseende finner man t.ex. i det engelska patentet nr 1111 från år 1775, Akwright's patent, där det har samma uppgift som här.

Om modellen nr 1.640, vilket väl är troligt, erhållit idén till denna detalj hos Möller, skulle den alltså därmed kunna dateras till tiden omkring 1796.

Linberedningsverk med tandhjul att driva trähammaren i stället för knaggar, av samma typ som modellens finns ännu i Hälsingland i en enda socken, nämligen Hälsingtuna.

Tanken att även denna modell skulle vara gjord av en studerad karl och troligen en präst ligger nära till hands med hänsyn till de bety-

Denna teckning liksom de följande är utfärd för denna uppsats av I. Cirulis efter originalmodellerna från Modellkammaren, nu i Tekniska Museet (T. M.) eller Lantbruksakademiens Museum (L. M.).
Modell av linberedningsverk med två bråkhammare och ett skäkthjul av Olof Törnstens konstruktion omkring 1770. — L. M. nr 1.641.
Modell av linberedningsverk kombinerat med mjölkvarn. Troligen av J. G. Sejströms konstruktion, 1790-talet. — L. M. nr 1,640.
Modell av skäktmaskin att drivas med trampning, Jonas Gråbergs konstruktion omkring 1810. — T. M. nr 1.230.

Modell av linberedningsverk med refslade valsar för linets bråkning. En konstruktion av Olof Pettersson i Blaxmo omkring 1814. — T. M. nr 1.234.
delsefulla förbättringar den uppvisar. Letar man i herdaminnet finner
dan i Hälsingtunas grannsocken Rogsta på 1790-talet, en för sin
tid mycket känd man, nämligen komministern Jacob Gabriel Sefström
(1747—1830), fader till den berömda kemisten och geologen Nils
Gabriel Sefström, liksom till komministern i Bjuråker Anders Gustaf
Sefström, även han känd som stor nykterhetsvän och en synnerligen
kraftfull och allvarlig predikant.

Om denne Jacob Gabriel Sefström berättar herdaminnet: »Hela
hans tid var upptagen af jemn och trägen sysselsättning, dels i de
stycken som tillhörde hans lärarekall, dels med bruket af ägorna vid
prestbordet och vid flera hemman han innehade uti Rogsta, Tuna
(Hälsingtuna) och Ilsbo, men med den ovanliga själ- och kroppstyrka
honom var förlänad, krusade han aldrig för de mest trägna
göromål, de voro under en jemn helsa hans fägnad och glädje . . . Uti
sin snickareverkstad, sin smedja, i sin fiskebåt, vid plogen och på tim-
ringen med yxan i hand sågs han, van driftig och munter . . . Hans
kroppstyrka var så stor att han, då ynglingar i Hudiksvall under hans
frånvaro förolämpade barnen (han var lärare där i sin ungdom) . . .
förjagade han dem, 50 stycken utur staden.»

Man vet alltså att han var en man som sysslade med smide och
snickerier, vidare att han måste ha varit synnerligen mångsidig och
begåvad. Modellen visar dessutom, jämfört med de flesta andra mo-
deller, stora proportioner, den mäter 74×92 cm, medan t. ex. model-
len nr 1.641 endast mäter 24×39 cm. Slutligen var han gift med Anna
Broman, dotter till kyrkoherden Nils Broman i Rogsta, och brorsonds-
dotter till Olof Johan Broman. Med detta är naturligtvis ingenting
bevisat, men det finns dock anledning att här nämna hans namn som
en hypotes. När det sista inventariet för modellkammaren trycktes
1801, hade modellen troligen ännu inte införlivats med dessa sam-
lingar.

Slutligen har man från denna tid, närmare bestämt år 1799, en
beskrivning av ett linberedningsverk, vilken framför allt genom sin ut-
förlighet är ganska enastående. I den får man för första gången i
litteraturen en samlad och fullständig bild av en hithörande inrått-
nning.

Under en resa genom Sverige detta år, som gick bl. a. genom Da-
larna, Gästrikland, Hälsingland och Härjedalen, kom Johan Wilhelm
Schmidt, som var konrektor vid en tysk skola i Stockholm, att få sin
uppmärksamhet särskilt riktad på linberedningsverken. Vid sin hem-

Johan Wilhelm
Schmidt.
komst sammanfattade han sina intryck från resan i en bok, Reise durch einige schwedische Provinzen etc., tryckt i Hamburg 1801, i vilken han lämnar en detaljerad redogörelse för verken. »Vid beredningen av linet begagna de (hälsingarna) till klubbningen och bräkningen vissa maskiner, som drivs av vatten. De talrika bäckar, som strömmar ner från bergen komma dem väl till pass... så att vi för den skull påträffa än tröskmaskiner än skäktmaskiner nästan vid varje by eller gård. De senare äro inrättade på följande sätt: Ett vatrenhjul är det första som detta slag av maskiner fordrar. Då det emellertid inte skall sätta stora krafter i rörelse, behöver det inte vara så stort, och en del, som voro något större, drevos av så litet vatten, att man nästan kunnat stamma det med foten. Hjulaxeln går in i ett litet hus, där den närmaste änden är försedd med knaggar som lyfter en hammare, som består av en kraftig träklots vid ett skaft... Vid hjulaxeln sitter ett skivhjul i 1/2 fot i genomskärning. På något avstånd och parallellt med hjulaxeln, likväl något högre än denna ligger en tunnare axel, vid vilken likaledes ett skivhjul är fästat, som emellertid endast mäter 1/2 fot i diameter. Båda skivhjulen äro förbundna med varandra genom en omkring dem liggande lina... Denna senare axel har... en dubbel rad av ribbor som har samma bredd och tjocklek som de vanliga skäkttråna eller knivarna. Liksom ekarna på ett hjul, kring vilka man ännu inte lagt hjullötarna, stå dessa skäkttrån kring sin axel... Ribborna själva äro i 1/2 fot ifrån varandra runt sin gemensamma axel. Vid båda yttersidorna av skäkttråna äro ett par fastsittande bräder lodrätt upprättade, som ersätta skäktfötterna i det att skäkttrån, när de går runt, gå tätt intill dessa...

»Jag hoppas», säger Schmidt till slut, »att man skall förlåta en så utförlig beskrivning av dessa maskiner, då jag är övertygad om, att man skulle kunna inrätta dylika i åtskilliga trakter i mitt fosterland och kanske till gemensamt bruk för hela byar».

Det är lätt att finna, att denna beskrivning visar stora överensstämmelser med Tekniska Museets modell från år 1785.

Det är givet, att ryktet om linberedningsverken och de ekonomiska fördelar de erbjudde även spred sig utanför Hälsinglands gränser. Vid 1800-talets början gjordes också framför allt av hushållningssällskapen i de olika länen stora ansträngningar för att införa de norrländska linberedningsmetoderna. Men denna propaganda blev i stort sett resultatlös. Största framgången hade man i Värmland, där man tack vare ekonomiska uppowningar och en god organisation under åren 1810 till 1830 lyckades få till stånd ett trettiofald linberedningsverk.

Som en direkt följd av denna propaganda måste man betrakta två uppfteningar som vid denna tid gjordes i Värmland och som båda bygger på de hälsingska linberedningsverken. Av båda finns modeller från K. Modellkammaren bevarade i Tekniska Museet.

Som bilden av denna modell visar är det fråga om en skäktmaskin för trampning. Om en sådan finner man följande upplysningar i Wermländska Hushållningssällskapets årsberättelse år 1813: »... Men dessutom har Gråberg förfärdigat och till Modellkammaren inlemnat en större Skäkt-machin för trampningskraft af egen uppfarning, som påstås af dem, hvilka redan nyttjat honom, vara särdeles förmånlig, samt är nu här vid Sällskapets rum att bese.»

Denne Gråberg är identisk med Jonas Gråberg, som år 1810 till- sammans med tvenne andra personer på Hushållningssällskapets bekostnad sändes till Hälsingland och Ångermanland för att på platsen studera linets odling och beredning. Han är också författare till en liten skrift om linhanteringen, som gratis utdelades till allmogen.

Modellen återger ett linberedningsverk att drivas med vattenkraft, som emellertid i stället för den vanliga hammaren eller stamparna är försedd med refledd valsar för bräkningen av linet, varjämte verket som det vill synas bl. a. är förenat med ännu en mekanisk inrättning. Modellen bär följande inskription: »Olof Pettersson, Blaxmoqvarn». Inte heller denna modell behöver länge lämna oss i tvivelsmål om var den hör hemma. I Wermländska Hushållnings-Sällskapets årsberättelse år 1814 finns följande upplysning: »Ingen linbråka för vatter
Linberedningsverk har detta år, så vidt Sällskapet känner ånyo blifvit uppbyggd, men den af Sällskapets Ledamot, Mölnaren Olof Pettersson, Blaxmoqvarn uti Wisnums Socken, inrättade Bråkmaschin med valsar, synes särdeles svarande mot ändamålet, och har blifvit med förmån nyttjad af Landtbrukare rundt omkring, på 3:ne mills afstånd, till rengörande af deras linskörd.» Uppfinningen belönades samma år av hushållningssällskapet med ett pris.

I sällskapets årsberättelse år 1815 säges därefter om densamma:

»På Sällskapets bekostnad äro förfärdigade och till Kongl. Landbruks-Akademien öfversändte följande modeller jemte följande beskrifningar, allt i mindre skala.34) 1:o den af Mölnaren Olof Pettersson i Blaxmo uppfundna Linbråka med valsar, jemte flera andra dermed förbundna vattenverk. 2:o — 3:o en Skäktmachin för trampningskraft. 4:o — 5:o en Linstamp för handkraft, varande desse fyra sistnämnde dels uppfundne, dels förbättrade af Landtbrukaren Gråberg.»

Modellen till linstampen har tyvärr inte kunnat återfinnas. Beträffande modellen av Olof Petterssons linbråka från Blaxmoqvarn är attributeringen fullt klar, och troligtvis är det också Jonas Gråbergs skäktmaskin som i modell återfinns i Tekniska Museets samlingar.

Sammanfattning.

Linberedningsverkets utvecklingshistoria under 1700-talet var alltså i korthet följande. År 1700 satte Olof Johan Broman upp den första linhammaren för att med vattenkraft bråka linet. Ungefär samtidigt konstruerade han en vattendriven skäktmaskin bestående av skäktfot och skäktkniv, som fördes upp och ner, vilken dock aldrig fick den popularitet som hammaren åtnjöt. År 1738 föreslår Stephen Bennet, att man i stället för hammare borde begagna ett stampverk med tre stampar, vilket tiden emellertid ännu inte synes ha varit mögen för. År 1740 omtalar Wettersten, att man från denna tid begagnar dubbla hamrar. År 1764 meddela Pehr Schissler att han lyckats ändra om såväl hammare som skäktmaskin för att drivas av en häst. År 1770 konstruerar sannolikt Olof Törnsten skäkthjulet. År 1785 skapar Samuel Berg det första fullständiga linberedningsverket och gör skäkthjulet funktionsdugligt. Han överger dubbelhammaren till förmån för en större hammare, vartill han kombinerar verket med såväl mekanisk trösk- som slipmaskin. Slutligen fogas härtil omkring
Linberedningsverk

Detta är den ena sidan av saken, den tekniska. Men det finns också en annan, i och för sig lika märklig som dessa var och en i sitt slag utomordentliga inventioner. Vi få här ett stycke kulturhistoria i blixtbelysning, vars innebörd man nästan har svårt att acceptera.

I drygt ett sekel, från år 1700 till år 1800, ha vi kunnat följa, hur generation efter generation av studerade karlar, övervägande präster, var och en i sin socken, grubblat och funderat över ett och samma problem, frågan om hur man skulle kunna förbättra och fullkomna det för bönderna i dessa trakter livsnödvändiga linberedningsverket. Hur många de varit är inte längre möjligt att konstatera. Man bör väl förmoda, att minnena i form av skriftliga belägg och i original bevarade modeller härstamma endast från dem som lyckats, men säkert ha de varit många flera, som sysslat med problemet.

1) Carl v. Linné, Iter Lapponicum (1732), Sthlm 1888, s. 14.
2) J. Engström, Resa genom Norrland och Lappland ... till Sultelma och Gellivare är 1834. Sthlm 1834, 1. s. 5.
3) G. Hatt, Landbrug i Danmarks Oldtid. Khvn 1937, s. 33.
4) P. Norberg, Den ångermanländska linslöjden. Sthlm 1938, s. 11.
5) P. Schissler, Hälsinga Hushåldning. Sthlm 1749, s. 32.
6) Olof Johan Broman, Glysisvallur. 3: 1, s. 39.
7) K. Karmarsch, Geschichte der Technologie. München 1872, s. 622.
8) Sigurd Erixon, Skansens kulturhistoriska avdelning. Sthlm 1931, s. 132 f.
9) K. Barr, Olof Broman, författare till vår första roman. Uppsala 1898, s. 5.
10) Nils Keyland, Linberedningsverk. Fataburen 1921, s. 149.
12) C. J. Broman, Glyrisvallen 3: 1, s. 39.
14) Pehr Schissler, a. a. s. 35.
15) Nils Wettersten, Forssa och Högs ålder och wärde... år 1761. Sthlm 1901, s. 17.
19) J. Beckmann, a. a. s. Lpz. 1805, s. 103 f.
21) Olof Törnsten, Om Nätro Sokns Linsäde i Ångermanland. Uppsala 1753, s. 30.
22) Celsius Almanach år 1735.
23) Hushållnings Journal för September år 1779.
24) Pehr Schissler, a. a. s. 36.
25) Celsius Almanach år 1770.
26) Nils Keyland, a. a. s. 131.
27) För denna upplysning har förf. att tacka Civilingenjör Tomas Bennet.
29) Celsius Almanach år 1770.
30) P. A. Örnsköld, Berättelse om Wester-Norrlands Höfdingedöme til Riksdagen år 1769, s. 37.
31) Keyland, a. a. s. 130.
33) J. E. Fant och A. T. Låstbom, a. a. 2. Upsala 1843, s. 317.
34) Dessa beskrivningar ha icke kunnat studeras då Lantbruks-Akademiens arkiv tyvärr inte är uppordnat.
Gösta Bodman

POTTASKETILLVERKNING
I SVERIGE TILL MITTEN AV
1700-TALET

Professor Gösta Bodman behandlar i efterföljande artikel en industrigren, vars historia hittills varit föga beaktad.

Pottaskan brukades dels till tvätt, dels till framställning av såpa, dels till beredande av salpeter till krut, dels slutligen i rätt stor utsträckning vid glasbruken, innan man fick sodan, som gav ett lättsmältare och därför läthanterligare glas.

I Olaus Magnus’ historia om de nordiska folken (1555) finns däremot icke några uppgifter om bränning av pottaska.

Vi återgå till Peder Månsson. I de två första avsnitten talar denne om de växter, av vilka man lämpligen bränner askan. Han nämner därvåd inga träd utan blott örter dels »filicem», dels »kali», »alkali» eller på välsko »soda». Om örten »kali» säger han, att den även kallas »vermicularis» eller bladlösa eller »sempervivum minor». Då framför allt dessa första i viss mån nutida rent kemiska benämningar placerade på växter syntes mig rätt egendomliga, har jag vänt mig till professor Carl Skottsberg för att av honom få hjälp vid tydningen.

Med hans tillåtelse citerar jag ur hans brev följande:

1) Filicem är accusativus av filix = ormbunke. »Vilken art som avses är inte gott att säga och inte har jag heller hört talas om att askan skulle innehålla något som kan användas industriellt.»

1 A. W. af Sillén: Svenska handelns och näringarnes historia, I—IV, 1851—1871.

Förväxlingen blir förståelig om man ser efter vad Nyman1 skriver i »Sveriges fanerogamer».

Salicornia herbacea L. Glasört. Den torkade och brända växtens aska lämnar soda, lik den som brukas vid glasbruk. Men den mesta och bästa sodan erhålls av i södra Europa och Orienten växande Salsola — arter m. fl. av vilka några också odlas enkom för soda-vinning (s. 225).

Suaeda maritima (L) = Chenopodium maritimum (L. Dum.) Saltört — — kan i likhet med Glasörten brännas till soda (s. 226).

Salsola Kali L. Sodaört — — kan den, i likhet med Salt- och Glasörten, torkas och brännas till soda (s. 227).

Till detta har Professor Skottsberg tilllagt:

Ordet »Kali» har i gamla tider (före Linné) använts för alla möjliga feta växter, även om de icke använts till någonting. Men med tillägg geniculatum blir det mera fason på saken. Linné anför i Sp. Pl. 3 dylika:

a) K. geniculatum majus = Salicornia fruticosa
b) K. geniculatum minus = Salicornia arabica
c) K. geniculatum ophyllanthes = Salsola vermiculata.

Alla dessa äro »sodaväxter». För svenska förhållanden torde Kali geniculatum ha betytt både Salicornia herbacea och Salsola kali.

Om också Peder Månssons angivande av de örter som kommo till användning i äldre tider för pottaskans framställning lider av en viss otydlighet, förtjäna hans efterföljande beskrivningar på bearbetningssättet att citeras, då de giva en ingående kännedom om arbetsgången. Stavningen är moderniserad, då ju det gammaldags skrivsättet icke är ägnat att påkalla någon uppmärksamhet för här föreliggande uppsats.

Huru askan brännnes.

Hämta av den föreskrivna örten kali mycket och (en) stor hop. Och göras en hula (grop) neder i jorden, och botten i gropen strykes tätt och slät med lera.

1 Nyman, C. Fr. 1820—93. Konservator vid Riksmusei botaniska avdelning, 1855—89.

Detta är ju en beskrivning på bränningen som är tydlig och icke lämnar något övrigt att önska. I det följande avsnittet får man följa det gamla sättet att framställa den rena pottaskan, raffineringen.

Tag den för(ut) nämnda saltstenen, som du finner nederst i gropen och stöt honom grannan (fin) i en mortel, så torka och sikta honom genom ett fint såll som mjöl. Sedan låt det i ett kar och slå rent vatten däruppå, rörandes samman, så att vattnet står två finger över det mjöllet. Och låt stå och sjunka till botten, det som är orent. Och det som bäst är bliver ovan. Sedan såla det genom en ren filt i en gryta eller kruka. Och sått så i en het ugn, låtandes henne stå där över natten. Så löper det samman i en saltsten. Men löper det ej samman i ugnen om första natten, då hettas ugnen och insättas (krukan) till dess det bliver torkat samman. Somliga pläga taga det silade vattnet och låta (sla) det i en lerpanna, såttandes (den) på elden till dess det torkas, och så är det rent »sal alkali«.

Item: somliga pläga låta (sla) 4 lispund vatten och somliga 6 mot varje en lispund saltsten, som stött är. Men till glas plägas han ej ofta så renas.

Det synes sålunda som skulle pottasketillverkningen hava gått rent hantverksmässigt till och resultatet, det färdiga saltet nog ej uppfyllt så stora fordringar på renhet.

Gustaf II Adolf föreslog också inkallande av kunnigt folk från utlandet som verkligens förstod sig på askbränningen, för att därigenom få ett bättre resultat och förhindra ett planlöshämnande av skog.

Tullordningar från 1600-talets mitt giva vid handen att man då nödgades importera aska och pottaska från utlandet, men man sökte dock skydda den inhemska tillverkningen genom införseltullar, därvid man enligt hävd behandlade svenska skepp med lindrigare kull än de utländska. Så var exempelvis kring år 1640 införseltullen för ett fat aska 8 öre från svenskt fartyg, men 12 öre från utländskt fartyg. (1 fat = 25 lispund = 212,5 kg) (1 riksdaler = 32 öre).

Är det möjligen ett utslag för Gustaf II Adolfs uttalade önskan om

1. Det hela skall drivas som ett Compani, med direktorer och participant. Och Companiet får rättighet att uppbygga pottaskebrännerer på alla bekvämliga orter som äro Kronan immediate tillhöriga.

2. Companiet garanteras att icke någon annan skall få ett liknande privilegium. Alla andra skall vara förbjudet att driva liknande verk efter samma konst och handgrepp. Men för att undvika monopol skall det vara fritt för vem som helst att insätta penningar i Companiet till dess att kapitalet stigit till 100 000 rdr. Dock skall ytterligare jordägande vara berättigad att deltaga genom att insätta råvara, d. v. s. aska från egen skog upp till högst 2 000: — rdr.

3. Companiet får rättighet att uppköpa aska var som helst, men det har skyldighet att köpa all den aska som utbjudes av Kronan och detta till ett pris av 16 öre samt per tunna under de tre första åren, sedan till 19 1/3 öre samt (1 tunna = 14 lispund = 119 kilo).
4. Bränningen av aska i Kronans skogar skall inskränkas så att Companiet ej hindrar bergsbrukets behov eller behovet av timmer, mastträd och annat husbehovsvärde, till byggnad, bränsle m.m.
5. Arbetsfolk får Companiet skaffa sig så mycket det behöver och arbetarne skola tillsvidare lyda under Bergsordningarna, men de äro ej befriade från mantals- och kvarntullspenningar.
6. Companiet skall hava rättighet att hyra tjänliga rum och bodar i städerna för askans förvarande och bearbetande. Och arbetsfolket skall vara fritt från vakt, inkvartering och borgerlig tunga undantagandes Kronans acciser, tullar och mantalspenningar samt städernas bro- och andra penningar. Faktorigårdarna äro dock undantagna från dessa rättigheter.
8. Vill Companiet inrätta såpsjuderi, har det rättighet därtill.
9. Vid export av såpa betalas en utförseltull av 36 öre samt för varje fat av ordinar storlek.
10. Materialier till askebränningen och såpsjuderierna skall Companiet hava rättighet att upphandla fritt.
11. Med tanke på svårigheten att i början få tillräckligt antal arbetare skall Companiet under de närmaste 6 åren få till förfogande nödigt antal soldater från Kronan. Soldat skall hava 16 öre kopparmynt kontant för varje stavrum ved, men skall uttryckligen icke påtvingas att köpa varor av Companiet. (1 öre silvermynt var då = 2 öre kopparmynt.)
13. Om i händelse av krig eller annan landsplåga avsättningen av pottaska minskas, kan Companiet uppsäga kontraktet om Kronans aska 1/2 år i förtid. När landsplågan är slut är Companiet dock skyldigt att återigen uppköpa all Kronans aska. Companiet har »att all möjlig flit och möda använda, så att konsumtionen icke på något sätt må studsa eller hindras».
15. Skulle Companiet göra någon uppfinning att »extrahera den kraftigaste materien« utur askan och Companiet skulle finna lämpligt att därom undervisa allmogen, då skall under detta år för andra vara förbjudet att uppköpa sådan eller utskeppa sådan extraktionsmateria, vid varans konfiskation, hälften av köparen och hälften av säljaren.

Hur det gick med det så stort planerade Hamiltonska Pottaskekompaniet i fortsättningen har jag icke utrönt och icke heller har jag mig

Kanske är det detta Compani som så småningom ersättas av de privilegier på pottaskebrännande i Södra Møre i Kalmar län som Carl Oxenstierna och Hinrich Lemken erhöll den 6.6.1678 och 8.4.1682.

Skåne, Blekinge och Småland voro nog de starkast askbrännande landskapen, och från Skåne exporterades askan och pottaskan i fat under 1600-talet. En annan export gick över Blekinge och Halland.

Visserligen var avsikten ursprungligen att av själva skogen endast grenar, ris, stubbar och mer eller mindre ruttna träd skulle få brännas till aska. Och det blev nog också mera avfall i skogen i gamla tider än nu. Man hade då icke samma användning för det halvvuxna trädbeständet.

Man märkte dock rätt snart att skogen i de sydliga landskapen allt för hårt utnyttjades till askbränning och därför starkt decimerades. Detta skogsödande gjorde sig så märkbart, att man på högsta ort ansåg sig börja vidtagna åtgärder för stävjandet av det snart inrotade missbruket att även bränna bättre virke blott för askans erhållande.

Den 17 febr. 1680 gick från Carl XI brev i ärendet till landshövdingarna i Småland att de skulle utfärdra förbud för skogshygge till pottaskebrännande. Skrivelsen tillkom på förslag av riksrådet och generalguvernören Johan Gyllenstierna och förbudet gällde speciellt Blekinge och Småland.

Några månader senare den 9 aug. 1680 avgick en skrivelse i samma ärende till överste Erik Dahlberg, då landshövding i Jönköping.

Carl — — — Såsom vi förnimma, att en del bönder, som bo upp i skogsbygden sig därpa lägga att bränna aska, varigenom icke allenast våra skogar bliva angripna och ruinera, utan och samma pottaska finnes vara mycket slät och gemen, så att nyttan därv intet svarar emot den skada, som skogarne därigenom tillfogas.

Alltså och emedan Vi i nåder sinne åro framdeles bättre pottaskeverk, det ena uti Norre härad och det andra uti Göinge härad emot Blekingen att inrätta, och därsammastädes r a f f i n e r a d pottaska att bränna låta, till vilket verk skogsbonden till sin näring kan leverera och sälja den lössakan, som han av
ruttna och furuträn, vilka av sig själva nedfalla, eller av vinden kullblåsas, utan någon skogsskada kan bränna.

Ty är till Eder Vår nådiga vilja och befallning, att I emellertid granneligen däruppå se, att ingen bonde hädanefter må tillåtas, några färskare och gröna träd till pottaska att nederhugga, utan att skogarne, så mycket som möjligt är, till ovanbemäte Vår nådiga intentions befrämjande conserva de bliva.

Brev med liknande innehåll avgingo samtidigt till ett par andra landshövdingar, generalmajor S. Ranck och generalmajor G. H. Lybecke.

Det förefaller emellertid som skulle höga vederbörande rätt snart insett att detta var att gå fram litet för hårdhänt. Redan efter ett halvår, den 30 juli 1681, måste man läta på bestämmelserna »alldenstund» — som det heter — »Vi taga en märklig avsaknad i Våra inkomster, borgaren i sin handel och bonden i sin näring genom pottaskebränneriets hämmande och tullens förhöjande därpå». Man skulle sades det, få bränna pottaska med moderation och måttlighet, till vilken ända dock inga andra träd må brukas, än de som kullfallne, ruttna och fördärvade äro och till intet byggande tjänliga äro. Den som fäller eller angriper andra träd än de som oduglige och fördärvade äro, skall ock utan allt skonsmål androm till varnagel straffad varda. Detta brev gick till amiral Wachtmeister och gällde hans guvernement (Blekinge).

Här är platsen att ur en svensk apotekartaxa av år 1688 anteckna de skilda slag av aska som fördes samt tillhörande priser, vilka väl antagligen gälla per skålpund, ehuru det icke är angivet.

<table>
<thead>
<tr>
<th>slag av aska</th>
<th>Pris (ökta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cineres viti</td>
<td>Weinrancheasche 3</td>
</tr>
<tr>
<td>Cineres absynthii</td>
<td>Wermutasche 2</td>
</tr>
<tr>
<td>Cineres fabarum a stipit</td>
<td>Bohnenstrohasche 2</td>
</tr>
<tr>
<td>Cineres ligni juniperini</td>
<td>Wachholdernholzasche 2</td>
</tr>
<tr>
<td>Cineres clavellati</td>
<td>Pottaska</td>
</tr>
<tr>
<td></td>
<td>Weidasche</td>
</tr>
</tbody>
</table>

Hur gick det då i fortsättningen med pottasketillverkningen, pottaskebrännerierna, som skulle förädla den »gemena» askan? Vad säga oss de officiella privilegieförteckningarne i saken?

Den 28 mars 1690 sökte Theodor Christophersson (Thore Christophers) hos Kgl. Maj:t privilegium på pottaskeraffinaderi och såpsjuderi i Blekinge. Sedan Kommerskollegium den 4 juni tillstyrkt, beviljades privilegium den 3 juli 1690 på en anläggning i Ronneby, var-
vid det framgick att Christopherson tydlig ftypedintress-
senter i företaget. Ett par citat ur privilegiebrevet:

1) Alla de råmaterialier som till deras manufaktur kunna nödig vara och ifrån främmande land inhämtas, skola vara alldeles befr. för Stora Sjö-
tullen, allenast de giva 1/8% till recognition, men all de deras instr. em
och arbetsredskaper skola alldeles vara fria både för Lilla Tullen och Stora
Sjötullen.

2) Efterlåtes dem, när detta verk infört och uppbyggt är att däromkring få
uppköpa ingredienser och varor, som till dess drivande behövs.

Blekinge, Småland och Skåne voro och blevo pottaskelandskapen
framför övriga, möjligen bl. a. sammanhängande med lättheten till
export, men antagligen främst på grund av vissa med bergsbuket i
övriga landskap sammanhängande faktorer till vilka vi återkomma.

Under de följande 50 åren hava noterats följande privilegier:

1734 3/12 för borgmästaren Jan Alm m. fl. i Karlshamn. Förnyades
1752 24/11 för samme man jämte 11 intressenter. Men å andra sidan
nämnes i en utredning år 1753, att de då ännu ej ens utsett
tomt till raffinaderiet.

1737 29/11 för Jan David Bosson och Magnus Sundius i Ronneby.
Möjligen är detta det verk som övertogs av J. Anckar-
crona och J. Lindblom, men som år 1753 säges hava av-
stannat.

1740 26/6 för D. N. von Höpken och Jan Rudolph Bertling i
Skiäggenäs, Kalmar län. År 1753 var detta nedlagt.

1754 27/4 för Cervin och medintressenter, Karlshamn.

1746 11/12 för Petter Rudbeck på Norra Bruhsås, Småland.1)

*

När Vetenskapsakademien år 1739 började i tryck utgiva sina
Handlingar, publicerades i dessa iakttagelser och »påfund», som det
hette, d. v. s. uppfinningar för att bättre tillgodogöra sig landets
naturriksdomar.

Jag nämner i förbigående en upsats år 1741 av Georg Brandt, as-
ssessor i Bergskollegium. I denna redogör han för några undersöknin-

1 Vid de manufakturer som behövde pottaska för sin fabrikation förekrom egen till-
verkning, varvid privilegium för detta inryms i privilegiet för fabriken i fråga. Vid
t. ex. Rodga buldansväveri i Östergötland brändes pottaska på gårdens ägor av rutten
björk och al, vilket skötes av »faktoren med eget därtil av älder tillvande och
lärde folk».

97
Pottaska

gar på Laboratorium Chymicum utförda november månad 1727. Han talar därvid om ett »sal tertium», som han ibland, men icke alltid, kunnat få ur pottaska. Beskrivningen tillåter mig icke att draga några bestämda slutsatser om vad detta »sal tertium» egentligen var.1

Kan man kalla denna uppsats av Brandt rent vetenskaplig och kanske därför rätt svårtolkad, så är den nästa pottaskeavhandlingen i stället mycket lätt att smälta, dikterad som den är av rent praktiska syften och riktad till en publik utan kemisk underbyggnad. »Anledning till åtskillige ofelbara näringar» har till författare A. J. Nordenberg, 1741.

A. J. Nordenberg f. 1696, d. 1763 var son till överinspektoren för salpetertillverkningen i Finland J. E. Nordenberg. A. J. N. adlades till Nordenskiöld, blev generalkvartersmästare för befästningarna i Finland samt slutligen landshövding i Finland.

Uppsatsten omfattar åtskilliga näringar, även pottaskebränsle. Han skriver:

Ibland sådana nyttiga handaverk på landet, är saltsjuderi av aska eller den s. k. pottaska, ett gott näringsmedel, i synnerhet för den fattiga, samt löst och ledigt folk. Aska finns uti varje hus. Mera kan lätteligen i ymnighet uti skogen tillverkas av kvistar och sådant bränsle, som icke lönar mödan att föra hem till husvärme. Åvenväl av ormbunksgräs och malört, med det krusiga saltsjögräset, som somligstädes kallas tång och i Nyland kallas Heuter, vilket växer uti sjöbotten och kastas upp med vågorna på stranden. Detta synes vara detsamma, som uti England kallas Kelp, varav pottaska brännes till det fina engelska glaset. Dessa bågge sistnämnda giva ganska ymnigt och gott salt, långt mera än efter något annat bränsle, som jag med undran och mycken märksamhet har utrönt.

Sättet med få ord att säga, till Pottaskegörning, är följande:

Utur askan göres klar lut, som vört utav malt. Luten hopsjudes uti en gryta, så mycket man har i förråd, till ett stenhårt mörkgrått salt, som därutur efter kallnandet hugges löst, och är då redan värd 5 å 6 daler lispundet (8,5 kilo) om luten blivit ganska klar hanterad, fri från sand och jordaktighet. Efter en tunna god aska fås ett lispund Lut-salt och av hårt bränder aska ännu mera.

Det som man möjigen bör fästa sig vid är användningen av orm-

1) Ännu tyckes han ej med säkerhet skilja mellan pottaska och soda.
bunkar, som utgångsmaterial (jfr. Peder Månsson). Brukandet av tång vilken Nordenberg sidoställer med det som i England kallas Kelp, är ett direkt bevis för att lekmannen, ty det måste man väl kalla honom, ej kände skillnaden mellan å ena sidan sodan, som man får av den engelska kelpen och å andra sidan pottaskan, skillnaden mellan vad man litet längre fram kallade det »milda mineraliska alkali» och det »milda vegetabiliska alkali».

»Värdet av väl bärgat och torkat ormbunksgräs», säger Triewald, »är alltid dubbelt emot det bästa hö och finnes ej så stor myckenhet därav, att icke mera åstundas».

Slutligen må nämnas en användning av helt annat slag för pottaska, omtalad av Carl Skytte i en uppsats år 1747 under titeln »Brännvin ur potatis».

Sedan Skytte av 4 kannor potatis fått fram 1/4 kanna »gott brännvin», rektificerade han detta över pottaska genom »destillationen per arenam» (sandbad?) varigenom den starkaste spiritus var ett väl mätet kvarter.

Pottaskan brukades här tydligen glödgad, och hade uppgiften att kvarhålla vattnet i brännvinet. Man fick en starkspiritus som syntes vara av ungefär dubbelt så stor procenthalt som det »goda brännvinet» låt oss säga omkring 80 %.

Även utanför Vetenskapsakademiens Handlingar finns vid denna tid hithörande svensk litteratur. År 1740 försvarade Andreas Lundmark, från Småland, i Åbo en avhandling under presidium av Nicolas Hasselbom, professor i matematik, vilken väl antagligen också var, enligt dåtidens sed, den som författat skriften.

Man har ett stort kärl, en så, med ett tapphål i botten. I botten lägges »såsom vid bryggd» ett lager av halm, »rosthalm» rätt tjockt och över denna en matta, flätad av halm eller »pertor» (= stickor). Detta är den egentliga filtreringsanordningen. Så rör man till i en bytta vatten och aska till en tunn gröt, vilken smetas över hela mat­tan och särskilt noggrant vid kanterna.

När luten ett helt dygn med stark force kokat lägger sig på botten
en aska, som ser ut som vit skrivsand och då för grytan ett stort kul-
er med sig, (den stöter). Detta är den önskade pottaskan. Den tages
upp med en järnslev med fina hål (för vätskans avrinnande) och har
ett skaft av trä (värmeisolerande). När askan väl börjat komma, får
man skrapa botten med sleven och skörda pannan »flera resor» om
dagen.

Askan samlas under hela veckan i ett kärl. På lördagen fyller man
lutgrytan och kokar häftigt till dess luten blir som en tjock välling.
Då slås hela veckans pottaska i denna välling. »Och då är nödigt, att
en stark karl står och rörer detta tillsammans med en viss spade eller
»bössel« tills allt blir vitt som en kalk, då det är fullkomligt. Men blir
det ej så vitt, så är det ej så gott, och ett tecken, att luten ej varit klar.
När det nu så röres omkring brinner elden lika fullt som förr, men
alltför måste karlen röra det omkring. Och då det fastnar i botten
eller vid bräddarna stöta det löst med bösseln. När det vitnar, minsk-
as elden under grytan. När det är fullkomligt torrt, blir det som mjöl
att röra och hantera.»

Denna svenska text är ju en så detaljerad arbetsbeskrivning, att
den lätt skulle kunna tjäna som handledning för den blivande pott-
askebrännaren.

Den tyska texten synes vara hämtad från Kunckel. Den innehåller
framför allt en beskrivning på huru man genom kalcinering, glödg-
ning, ytterligare kan rena pottaskan så att den blir vit som kristall
och då med fördel kan användas för att framstålla det allra klaraste
och renaste glas.

Vid denna tid, början av 1740-talet, synes Kommerskollegium hava
fått ögonen öppna för pottasketillverkningens nytta för landet. Detta
tar sig uttryck uti publicerandet av en slags handledning i pottaske-
sjuderiet:

Engländaren Christopher Merrets beskrivning om POTTASKE-SJUDE-RIET

med Joh. Kunckels anmärkningar, innehållande sättet att sjuda och
calcinera pottaskan på vissa orter i Tyskland och annorstädes.

Efter Kongl. Maj:ts och Riksens Commercic Collegii befallning till
allmän nytta av tyskan översatt år 1742.

Då det till uppsatsen finns en bild, göres här några utdrag, respek-
tive citat, hänförande sig till bilden i fråga.
Sedan man fyllt karet med aska och vatten: »När detta är gjort, slår man mer vatten på, efter som karet är stort till och askan mycken, och förvarar denna starka lut i en särskild tina. Sedan gjuter man ånyo vatten på askan, tills det räcker däröver, låter det stå över natten och längre, och taggar sedan av. Vilken lut såsom svagare gjutes sedan i stället för vatten på ny och obrukad aska, så att allt saltet kan bliva utdraget och till nytt gjort.»

»När luten i kitteln kokar, öppnar man så tappen (på trätunnen) att den kalla luten kan i vidd som ett tjockt halmstrå rinna i den, som kokar. Men är kitteln stor, låter man det löpa starkare, emedan alltid så mycken lut bör rinna in, som vatten röker och dunstar bort.»

»Således låter man luten småningom efter kittels storlek till ett alldeles torrt salt inkoka, och när det är kallt, slår man det, som av sig själv ej lossnar, med en järnkil eller mejsel löst, och börjar så åter med sjudningen, tills man har nog.« (Beskrivningen på kalcineringen förbigås här.)

Så följer Kunckels anmärkningar, vilka bl. a. hava intresse beroende på att han gör vissa ekonomiska kalkyler vid arbetsförfarandet. »För övrigt går gemalen den tioendedel av pottaskan bort vid kalcineringen. Men brännes densamma starkt i kokpannan eller kitteln, går då i rostningen ej så mycket av.« (En tämligen självklar sak.)

Det kanske intressantaste i denna uppsats är dock att Kunckel kommer med en del rätt ingående kostnadsberäkningar:

Förslag över vad den så kallade Dornburgiska pottaske-hytta i furstendömet Jena kommit att costa.

<table>
<thead>
<tr>
<th>Artikel</th>
<th>Svenska daler kmt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyttan är 32 alnar lång och 14 alnar bred, kostar att bygga</td>
<td>590</td>
</tr>
<tr>
<td>Pannan väger 4 1/2 centner å 55 dlr. År 1 1/16 aln djup, 1 3/4 aln bred och en god aln lång, kostar omtrent</td>
<td>248</td>
</tr>
<tr>
<td>Två kopparkittlar vardera av 19 skålp. vikt, kostar ungefär 24 dlr</td>
<td>48</td>
</tr>
<tr>
<td>Tio askekar, av vilka 8 st. brukas, kostar 3 dlr 12 öre st.</td>
<td>34</td>
</tr>
<tr>
<td>Ätta byttor, där luten löper uti å 9 öre, två vattenkannor å 9 öre, 2 kar å 6 dlr</td>
<td>15</td>
</tr>
<tr>
<td>En krok och skyffel, som brukas vid kalcineringen. Skaftet på skyffeln är 2 goda alnar långt. Och skyffeln är 1 1/2 kvarter bred</td>
<td>10</td>
</tr>
<tr>
<td>Två lårar eller kistor, där pottaskan förvaras, åro räknade till</td>
<td>12</td>
</tr>
<tr>
<td>Kalcinerugnen</td>
<td>90</td>
</tr>
</tbody>
</table>

Summa dlr kmt 1 047

Den kostnad oberäknad, som användes på vattunedlingen och pottaskesjudarens våningshus.

Utantill är själva ugnen 3 alnar hög, 5 dito bred och 6 goda alnar lång. Innantill är han knappt en aln hög mitt uti, och byggd i en cirkel. Bredden är 3 alnar mitt uti, men framman och bak allenast 1 1/2 aln. Längden innantill är 5 alnar.
Förslag över en kokning

Till en kokning 10 å 11 skäppor eller 44 byttor aska à 3 styver 12:12
3 famnar ved à 5 dlr 2 öre .. 15:6
Pottaskesjudaren får för centnern 2 dlr 8 öre, löper omtrent på en kokning à 1 centner 8 skålpl. .. 3:30

Summa 31:16

Om man nu av en sådan kokning får 1 centner 8 skålpl. pottaska och centnern säljes till 4 Fl. à 21 G. groschen eller omtrent 23 dlr 20 öre och omkostnaden à 31 dlr 16 öre avdrages blir vinsten 8 dlr 2 öre Kmt. Men är askan god förtjänar väl mer.(?)

Att Carl v. Linné med sin öppna blick för naturprodukternas tillgodogörande även under sina resor skulle finna anledning att beröra pottasketillverkningen är knappast ägnat att förvåna. Från Broby s:n i Göinge härad ger han i sin Skånska Resa 1749 följande skildring från sådant arbete.

Sedan denna blåaktiga, mörka eller slagglika aska blivit kall, föres hon till städerna och säljes för 16 å 20 styver lispundet, under namn av pottaska, om vilkens raffinerande i A. Lundmarks Disputation de productione cinerum clavellatum, Aboe 1740, kan läsas.

Som avslutning på pottaskans historia i Sverige före 1750 kan lämpligen tjäna en utredning av Georg Brandt i Vetenskapsakademins Handlingar 1746, i vilken denne på ett överskådligt och detaljerat sätt framlägger skillnaden mellan de två sorterna av milda alkali, pottaska, det vegetabiliska, och soda, det mineraliska. »Åtskillna-
den mellan soda och pottaska» är rubriken på den blott två sidor omfattande uppsatsen. Två voro de väsentliga skillnaderna:
1) Sodan låter sig kristallisera, utan att därtill behöva någon lindrigare hetta, än allmänt brukas till kristallisationer.
Pottaskan kan ej bringas till fast form (ur en lösning) förrän den *ad siccum* (till torrhet) inkokas.
2) Sodan delikvescerar icke i fuktig luft (flyter icke sönder).
Pottaskan flyter sönder i fuktig luft.

De nya privilegierna under 1750-talet har jag funnit vara:
1749 *Skytte*, major, avliden före 1753, hade i Skeinge, Kristianstads län, en anläggning. Där fanns två stora pannor, var och en på 2 1/2 tunnors rymd. »Årligen skulle där kunna tillverkas 1 000 lispund (8 500 kilo) lutsalt, men då ägaren ej kunnat få aska annat än från egna skogar har tillverkningen stannat vid 500 å 600 lispund (c:a 5 000 kilo). Detta lutsalt har sålts till färgerierna, till koboltverket i Hälsingland (till den blå färgen »smalt») och till apoteken i Stockholm och »det har gillats på samtliga ställen».
1750, 26/6 *Haberman* i Halland.
1751 *Daniel Bröms*, handelsman från Stockholm fick privilegium på pottaskeraffinaderi och kalcinerverk i Kompersmåla, Almundsryd, Småland. Han slog sig senare, 1755, tillsammans med *Olof Fahlén* i Kristianstad.
1753 *A. von der Hagen*, *S. Lundberg* och *N. Lindahl* omtalas hava skaffat sig tomt för en pottaskeanläggning i Karlskrona, men
»äro ännu ej i gång. De anse sig hava anledning klaga över att en O. FahIén fått ett privilegium i lånet.«

1753, 5/2, återfinner man visserligen Olof Fahlén, men han omtalas då hava fått privilegium för en anläggning i Kristianstad.

1755, 19/8. Sammanslöto sig Olof Fahlén och Daniel Bröms.

För övrigt talas det om tre raffinaderier för pottaska i Kalmar län.

<table>
<thead>
<tr>
<th>Torsås(?)</th>
<th>Årstillverkning</th>
<th>35 lispund</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skiäfveryd</td>
<td>»</td>
<td>70 »</td>
</tr>
<tr>
<td>Skiäggenäs</td>
<td>»</td>
<td>17 » (innan det raserades)</td>
</tr>
</tbody>
</table>

122 lisp. = 1 037 kg

Tydligt är att Kosta glasbruk blev en mycket stor avnämare av pottaska till sin glasfabrikation. Till bruket levererades ytterligare från Kalmar län:

<table>
<thead>
<tr>
<th>Från Wissefjärda (3 grytor)</th>
<th>70 lispund årligen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Från Korsmås (Kompersmåla?) (3 grytor)</td>
<td>24 »</td>
</tr>
<tr>
<td>Från ? (oläsligt namn)</td>
<td>262 »</td>
</tr>
</tbody>
</table>

356 lispund = 3 026 kg

Kosta glasbruks behov av pottaska var enligt uppgifterna år 1753 rätt avsevärt nämligen upp till 695 lispund (5 908 kilo) per år och av detta tillverkade Kosta självt blott högst en tredjedel.

Med det behov Kosta hade av pottaska var det ej att undra på, att ägarna utverkade sig tillstånd att även i Kristianstads län driva eget pottaskeverk. Men detta slog ej väl ut. »De hade mött motstånd från en oförstående allmoge, som ej vill sälja sin aska till deras raffinaderi utan luttrade den själv och sedan säljer den till städerna i stora partier, lispundsvis.«

Från Falu län meddelas, fortfarande 1753, att brukspatron Jöns Flygare på Siljansfors var den ende som sökt privilegium. Men ännu 1755, 26/4, klagar Flygare över att ej hava fått besked på sin framställning. Man kan säkert anta att det var omsorgen om bergsbruket
med dess behov av skog som gjorde vederbörande tveksamma, där det gällde mer eller mindre värdefull askbräning, där man varken tog vara på bränslevärde eller träkol, vilka för bergshanteringingen voro viktiga faktorer.

Från Umeå meddelas slutligen att år 1753 där icke fanns något pottaskebränneri.

1755 omtalas ett pottaskebränneri vid Djurhamn på Djurö utanför Värmdö.

Man hade tre olika kvaliteter av aska. En uppfattning om värdet av de skilda slagen kan man få — ehuru visserligen indirekt — genom utförseltullen på de skilda asksorterna. Med den taxering som finns angiven nämligen att det gick 14 lispund (119 kg) på en tunna får man följande jämförelsetabell:

<table>
<thead>
<tr>
<th>Utförseltull år 1753</th>
<th>Relativtal</th>
<th>Föreslagen ny Relativutförseltulltal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pottaska</td>
<td>9 1/3 öre smt/tunna</td>
<td>7 1/2 öre smt/tött</td>
</tr>
<tr>
<td>Luttrad aska</td>
<td>2 1/2 » »</td>
<td>2 1/2 » »</td>
</tr>
<tr>
<td>Gemen eller spisaska</td>
<td>1 1/3 » »</td>
<td>1 1/3 » » /tunna 1</td>
</tr>
</tbody>
</table>

Jämförelsetalen visa att man föreslog en utjämning tydande på att man nu kommit upp till arbetsmetoder, som gäv en bättre luttrad aska än förr samt att antagligen pottaskeraffineringen nu drog en lägre kostnad än tidigare.

Med senare hälften av 1750-talet började pottaskan, dess tillverkning och egenskaper, att bli föremål för mera vetenskapliga behandlingar i Vetenskapsakademiens Handlingar.

Ur uppsatserna år 1759 lämnas här några utdrag, vilka dokumentera den dåtida arbetsmetoden och den dåtida uppfattningen om pottaskan.

H. T. Scheffer: Pottaskeslagen och deras bruk. Häri omnämnas i detalj nio slag.

2. Ormbunksaska, raffineras icke. (Synes hålla soda, ty den säges vara bra till lättsoap glas samt till tvältillverkning.)
4. **Danziger-pottaska** genom kalcinering i ugn och sönderslagning. I denna ingår kalk, med efterföljande kausticering, d. v. s. uppkomst av kaliumhydroxid.
5. **Cendre Gravellée**, fransk, av vinranka och vindrägg, även denna ibland något kaustik.
8. **Salpeteraska** efter glödgning av salpeter. (Det på detta sätt erhållna är kaliumnitrit och icke pottaska.)

Under ej mindre än 26 paragrafer kommer en redogörelse: **Nu följer pottaskeleslagens bruk.**

Scheffer berör här icke endast de olika användningarna utan går i detalj in på, vilken av de skilda pottaskesorterna som är lämpligast för det ena eller andra. Här en kort sammanfattning, men blott gällande pottaskan, ej sodan.

1) Såpa och tvål-tillverkning, 2) Bykning och blekning, 3) Glastillverkning, ej mindre än sex olika typer och kvaliteter. 4) »Det mesta av pottaska som under det namnet säljes uppgår i färgerier framför allt vid blåfärgningar av olika slag, indigo, veide, 5) Framställning av Berlinerblätt, 6) Framställning av »glas-blått» (smalt).

Den andra uppsatsen i årgång 1759 handlar om pottaskeframställning: **Alexander Funck, »Pottaskekalcinering».**

Avhandlingen innehåller framför allt beskrivning på en förbättrad pottaskeugn, av ny konstruktion som förf. komponerat efter att under resor studerat ämnet i utlandet. Han låter texten åtföljas av trenne bilder, här reproducerade. Till ugnen följer en mycket detaljerad arbetsbeskrivning, i vilken särskilt betonas nödvändigheten av att hålla temperaturen vid en lämplig höjd, ej för låg och ej för hög.

På 8 timmars tid hade författaren i denna ugn bränt 1 1/2 centner, 150 skålpund (63,75 kg), med användande av 1/2 stavrum (ca 2,8 kubikmeter) björkved.

Den tredje avhandlingen av år 1759 är författad av Jacob Fagott och hade titeln: »Hydrostatiska rön — — lösningars styrka efter pottaska». Det var en experimentell undersökning för erhållande av en jämförelse mellan specifika vikternas hos lösningar efter de skilda slag av pottaska som då funnos i handeln. Här meddelas endast relativsiffror utan vidare redogörelse.

<table>
<thead>
<tr>
<th>Relativtal</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>611 svensk raffinerad pottaska</td>
<td></td>
</tr>
<tr>
<td>596 holländsk pottaska</td>
<td></td>
</tr>
<tr>
<td>562 spisaska</td>
<td></td>
</tr>
<tr>
<td>396 fransk pottaska</td>
<td></td>
</tr>
<tr>
<td>310 Riga-pottaska</td>
<td></td>
</tr>
<tr>
<td>249 rysk pottaska</td>
<td></td>
</tr>
<tr>
<td>212 polsk (Danziger) pottaska</td>
<td></td>
</tr>
<tr>
<td>136 Ormbunksaska</td>
<td></td>
</tr>
</tbody>
</table>

Relativsiffrorna giva Fagott anledning att dra på slutsatsen, att med den svenska raffinerade pottaskan kunde endast den holländska konkurrera. Den svenska hade han fått från Ideberg och Kompersmåla raffinaderier i Småland.

De från Riga, Ryssland och Polen, Danzig, importerade pottaskesorternas visade en lutstyrka 60—65 % svagare än den svenska och man hade därför ingen anledning att från utlandet importera pottaska. Han slutar: »Emellertid står det fast, att vetenskapernas både kunna och börja räcka hjälpamma händer åt konster och hantverkerier, när de förra av de senare åtlitas.» Forskningsinstitutbegrepp lan- serat redan 1759!

Till här lämnade beskrivningar må göras ett par enkla reflexioner angående brännningen och dess resultat.

Vid enkel, förnyad brännning till vad som gick under namnet rå eller välld aska kunde det inträffa att en del befintligt kalkmaterial övergick till bränd kalk. Vid vattentillsats för urlakning gav en om-

J. Fagott, 1699—1777, direktör för Lantmäterikontoret med Justeringsverket.
sättning mellan denna och kaliumkarbonat, pottaskan, upphov till kaliumhydroxid, det blev en partiell kausticering.

Till en början blev genom dessa och andra avhandlingar för en trängre krets pottaskan rätt grundligt känd såväl till framställningsätt som till egenskaper och användning. Men i stort sett dröjde det fram till 1780-talet innan intresset för pottaskebränsen tog sig uttryck i nya anläggningar eller privilegier.

Därefter blev det en avmattning varefter intresset fick en renässans under 1830—1840-talen såsom den lilla tabellen visar. Orsaken till fluktuationerna har jag icke tagit upp till undersökning.

<table>
<thead>
<tr>
<th>Nya privilegier</th>
<th>1730-talet</th>
<th>1740—</th>
<th>1750—</th>
<th>1760—</th>
<th>1770—</th>
<th>1780—</th>
<th>1790—</th>
<th>1800—</th>
<th>1810—</th>
<th>1820—</th>
<th>1830—</th>
<th>1840—</th>
<th>1730—1850</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>6</td>
<td>7</td>
<td>2</td>
<td>1</td>
<td>17</td>
<td>7</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>15</td>
<td>13</td>
<td>76</td>
</tr>
</tbody>
</table>

Mera än antalet raffinaderier synes mig anläggningarnas fördelning på landskapen vara värd uppmärksamhet.

För 8 av de noterade är orten, landskapet ej känd. Av de 68 återstående komma ej mindre än 57 st. på de från 1600-talet kända pottaskebrännande landskapen: 33 i Småland, 10 i Blekinge, 8 i Halland och 6 i Skåne. Till dessa fyra landskap, praktiskt taget utan bergbrukslandskap, må läggas Västergötland ehuru med blott 3 pottaskebruk.

I de utpräglade bergsbrukslandskapen Södermanland, Uppland, Närke, Värmland och Dalarna fanns i varje landskap endast ett pottaskebruk, då däremot Östergötland hade 2.

Hjelm, Peter Jacob. 1746—1813. Myntguardien och förest. för Bergskollegii laboratorium.
I samtliga dessa senare landskap behövde man skogen till träkol för bergshanteringens behov. Höga vederbörande torde därför varit mindre benägna att tillåta pottasketillverkning i dessa landskap för att denna ej måtte gå i vägen för bergshanteringens rationella drivande. Jfr den svårighet som mötte J. Flygare då han sökte få bräna pottaska i Falu län.

Att lämna en förteckning över innehavare av pottaskeprivilegier efter 1750 samt orterna för anläggningarna, ligger utom ramen för denna uppsats. En sådan förteckning finnes i Tekniska Museets arkiv. Här har jag endast velat i stora drag behandla pottaskenäringen i Sverige fram till ungefär mitten av 1700-talet.

Till slut må här återges några beskrivningar av allmogens sätt att tillverka pottaska under slutet av 1800-talet.

Genom tillmötesgående från Arkivarie Sten Lundwall vid Nordiska Museet har jag fått taga del av museets samlingar och excerpter gällande pottasketillverkning. Mycket var det icke, blott några kortfattade notiser.

Pottaskebrännningen var ännu i gång under min barndom. Här i trakten kommo merendels pottaskebrännare från Västra Göinge och från Örkelljunga för att framställa denna vara.

Man grävde en grav ute på ett lämpligt ställe i skogen. Denna var 2 alnar lång och 1 aln bred. I denna grav lade man sedan ved, bokstockar, två eller tre på en gång och voro dessa i allmänhet rätt så tjocka och bastanta.

Under resorna nedåt Skåne såldes emellertid mycket pottaska jämväl på landsbygden. Detta skedde efter mål och brukade man fråga
Pottaskebruk enligt kopparstick i Chr. Merrets beskrivning 1742. Fig. 1. A. Är trätunnan, som ställs på muren, där kitteln är insatt, och fylles med lut att därutöver släppas i kitteln. B. Är trätappen, som så mycket öppnas att luten C kan som ett halmstrå eller om det behöves, starkare utlöpa i kitteln. D. Järnkitteln. E. Den tjocka muren omkring kitteln. F. Eldstaden där veden inlägges. G. Drag- eller rök-hål på sidan av muren, att elden må dess bättre brinna. H. En liten bytta, därmed man öser luten i tunnan A. I. Fatet eller karet, där råaskan lägges och luten sedan i baljan K utlöper. — Fig. 2. A. Kalcinerugnen. B. Eldstaden, där veden kastas in. C. Rummet, där lågan spelar upp. D. Härden, där pottaskan lägges att brännas. E. Mundhål eller öppning på ugnen, där en karl står före, och som oftast rörer om pottaskan.
Alexander Funcks pottaskekalcineringsugn enligt kopparstick i Vetenskapsakademiens Handlingar 1759. Fig. 1. a. Är själva härdbotten, dit pottaskan inkastas, av flegra väl brända stenar, så att de väl samman passa med minsta bruk, vilket i botten måste endast vara ler. b. Stora gluggen med dess järndörr på bakar. Högt på dörren är ett litet hål som en ärt, varigenom man kan se in i ugnen. c.c. Eldstäderna på var sin sida lika långa och höga med härdbotten. d.d. Eldstädernas gluggar och järndörrren på bakar. e.e. Skiljemuren emellan härden och eldstäderna, höga av en stens bredd, stående på kant lösa, att man kan göra härden så stor eller liten som behagas. Fig. 2. Profil av ugnen efter linien på grundritningen. a. Härden med valvet c och härdbotten, e skiljemuren emellan härden och eldstaden. f.f. Ett litet rökhål, som börjar innerst i ugnen mitt i valvet, och går hela valvet tillbaks, för att varma detsamma, men går så ut igenom valvet ovanpå. Fig. 3. a. Glugg till stora härden. b.b. Gluggarna till eldstäderna, samt utprickat valv emellan båda över hela ugnen. c. Rökhålet.

Kopparstick i »Konsten att tillverka pottaska» av P. J. Hjelm, 1801. Detta och följande tre kopparstick liksom bokens text återgår på huvudsakligen franska förebilder och ge en uppfattning om hur ett industriellt drivet pottaskebruk var inrättat under 1700-talets slut. Fig. 1. Magasin för askan, med väggar av jord eller ler och halm täckt med halmtak. Storleken rättas efter den mängd aska, där skall förvaras. Fig. 2. a. Bord som bör vara i magasinet. b. Vågbalanserna med skålar av 7 till 8 tum diameter. c. Skålar, vari askan, som skall försökas, lägges. d. Mått, som innehåller en »Pinte», nära 3 kvartar, eller 2 1/4 skålpund vatten. Ett kvartar vatten väger 25 lod. Måttet kan här inrättas efter 2 skålpund vatten viktualievikt. (1 skålp. = 32 lod. Alltså 75 lod = 2 skålp. 13 lod.) e. Grått silpapper, som icke är limmat. f. Kärl, att hava regneller strömvatten uti, till askans undersökning. Fig. 3. a. Glasburk, vari luten silas. b. Glastratt. c. Grått silpapper. Fig. 4. Glascylinder fylld med lut, varuti provaren står vid 3 grader. Fig. 5. Lutprovaren. Fig. 6. Träfodral att förvara provaren uti. Fig. 7. Genomskärning av nämnda fodral, vars övre del bör vara fodrad med ylleduk. Fig. 8. Skottkärra att föras askan uti. Fig. 9. Träskovel. Fig. 10. Siket med järntråd, varigenom askan silas.
Kopparstick i P. J. Hjelms avhandling, 1801. Fig. 1. Grundritning till avdstunnsugnen. a. Dörrar till eldståden. b. Järngaller, inlagda vid botten av eldstaden. c. Gångar, varigenom röken och varmen gå ifrån ugnarne, som äro under grytorne, till kopparkitteln, varuti utlagningsvattnet uppvärmes till kokhetta. d. En skiljemur av tegel, som tvingar röken att cirkulera omkring grytan, förr än den går ut genom skorstenen. e. Draghål, varigenom röken går in i skorstenen. f. Skorstenspipa. Fig. 2. Genomskärning av ugnarna. Fig. 3. Annan genomskärning av ugnarna. Fig. 4. Järnblecksgryta eller panna. Fig. 5. Tackjärnsgryta med sin utstående falls, två tum nerom öppningen. Fig. 6. Kopparkitteln. Fig. 7. En mindre tina, som ställs bredvid järnblecksgrytan, för att ersätta den lut som avdunstar. Fig. 8. Ambar av trä att bära vatten uti. Fig. 9. Skopa eller stor slev av koppar, som nyttjas att ösa luten utur järnblecks- uti de andra grytorna. Fig. 10. Rundad järnskyffel, varmed rå pottaskan omröras i grytorne, till att befordra torkningen. Fig. 11. Järnbleck- eller kopparrör, avdelat i 5 till 6 stycken, vilka vart efter annat borttagas, då luten tappas utur karen. Fig. 12. Kar, varuti röret är insatt. Fig. 13. En med hushållning på ved inrättad ugn, som kan nyttjas i tvättthus, för att värma vatten till bykluten. a. Första grytan med sin eldstad. b. Andra grytan, vari luten inkokas och rå pottaska erhålles. Bägge äro av tackjärn.

Bilden till höger. Fig. 1. Grundritning till en kalcinerugn. a. Dörr till kalcinerrummet. b. Dörrar till eldstäderna, vari veden inlägges. c. Låga murar, varmedelst eldstäderna skiljas ifrån kalcinerrummet. Fig. 2. Genomsnittning av kalcinerugnen. Fig. 3. Anmärkning om kalcinerugnen. Fig. 4. Kalcinerugnen sedd i perspektiv. Fig. 5. Järnskyffel. Fig. 6. Järnspett, varmed pottaskan stötes loss, när den fäster sig vid botten eller väggarna. Fig. 7. Järnhake eller raka, varmed veden omlagas och pottaskan utdrages när den är kalcinerad.

föräldren vad en skäppa pottaska kostade, vilket vanligtvis var rätt så olika. Trots det arbete och besvär man hade vid dess framställning var den i allmänhet icke så dyr.

Under min barndom hade vi på Slättarp en dräng som körde omkring på släetten en hel vecka med pottaska åt en pottaskebrännare från Västra Göinge härad.

Pottaskan såldes på Matarengi marknad och i Haparanda. Man fick 10 kr lispundet.

Kamaripirtältä, 1944, sid. 55, av William Snell, Pottasketillverkning i Erkheikki, Pajala sn. Efter en intervju med en 89-åring.

(Författaren, Folkskoleinspektör Snell, har välvilligt gjort följande översättning från tornefinska.)

1 skäppa = 25 à 30 liter.

*

I all sin korthet innebära dessa skildringar, den ena från Skåne, de två andra från Lappland ett betydande intresse, ty de visa att man ännu under senare hälften av 1800-talet i stort sett använde samma metoder som Peder Månsson beskrivit i början av 1500-talet. I Skåne brände man ännu bokved i grop och i Lappland använde man vid samma tid en urlakningstunna av samma enkla uppbyggnad som under 1500-talet.

1742 Christoffer Merret: Beskrivning om pottaskesjuderier.

1743 Om askbrännning i skogen av förruttnade trän.

1759 H. Th. Scheffer: Historia om pottaskeslagen och deras bruk.

1759 J. Faggot: Hydrostatiska rön på alkaliska solutioners styrka efter — — så kallad pottaska.

1759 Alex. Funck: Om pottaskekalcineeringen.

1765 A. I. Nordenberg: Ett nytt näringsmedel för fattigt folk på landet, — — — att sjuda pottaska.

1774 P. A. Gadd: Rå-pottasketillverkningens upphjelpande i Finnland.

1788 P. J. Hjelm: Om varjehanda brukbara ämnens nyttigare användande.

1789 Sven Rinman: Bergverkslexicon (med litteraturhänvisningar).

1801 P. J. Hjelm: Konsten att tillverka pottaska.
Direktör Gunnar Lindmark fortsätter i denna årgång av Dædalus att återge notiser grundade på gamla patent och äldre tekniska tidskrifter.
Teknikhistoriska notiser

När infördes benämningen omnibus?

Ett tillförlitligt svar på den uppstålda frågan är det knappast möjligt att lämna; däremot kan man genom den äldre patentlitteraturen få en viss ledning för frågans besvarande.

Går man ca 150 år tillbaka i tiden, eller till slutet av 1700-talet, finner man i de engelska patentskrifterna ordet »coach» såsom representerande ett större, täck, fyrhjuligt fordon för personbefordran, med dörrar på sidorna och med ett fram- och ett baksäte invändigt samt utvändigt ett upphöjt säte för körsvennen.

I engelska patentet nr 2890 av år 1805 uppträdde första gången benämningen »stage-coach» (= diligens), varmed avsågs ett stort fordon med tre eller flera säten invändigt och även utvändiga säten samt avsett för regelbunden befordran av passagerare mellan bestämda stationer. Benämningen förekom sedan flera år framåt.

Först med engelska patentet nr 7259 av år 1836 uppträdde benämningen »om­nibus», vilken enligt ett engelskt facklexikon avser ett tungt fordon konstruerat för ett jämförelsevis stort antal passagerare, och vilket mot betalning befordrar sådana på bestämda router.

I detta vällovliga syfte patenterades i bilismens barndom ett par uppfinnningar av mera originellt slag.

I engelska patentet nr 896 av år 1877, uppfinnare R. Payton, heter det i texten att mötande landsvägslokomotiv och spårvagnar ha »a very alarming effect on horses». Till förebyggande av olyckshändelser genom att hästar bliva skrämda genom sådana mötande fordon föreslog uppfinnaren att framför fordonet fästa en eller flera mekaniska hästmodeller, vilkas ben, hals, huvud och öron skulle kunna röras såsom på levande djur, varvid rörelsen överföres från motorn medelst lina och linhjul eller kuggutväxling till en axel med vevar eller excentrar.

Uppfinnaren näjde sig emellertid ej med att söka lura mötande hästars synsinne, utan han vidtog även anordningar för att efterlikna klapprandet av hovarna mot marken, eventuellt genom att förse de konstgjorda hästarnas fotter med vanliga hästskor. Tyvärr saknas avbildning.

Ett amerikanskt patent nr 777.369, uppfinnare H. Hayes, av så sent datum som år 1904 visar en drastisk bild av en liknande konstgjord häst framför en bil.

I patentets inledning betonas särskilt, att uppfinnningens syfte är att förhindra att hästar skrämmas genom mötande motorfordon. Till nående av detta mål skulle framför bilen monteras en konstgjord häst i full skala, enligt patentritningen i fullt språng såsom i galopp med lyfta framben och med flygande man.

I huvudet skulle vara placerad en lampa kastande ljus dels framåt genom en lins, dels åt vardera sidan genom färgade linser motsvarande hästens ögon. Underkäken anordnades fjädrande ledbar och i munnen placerades en gummiplåsa med signalruta. Vid dragning i en lina gapade munnen och gummiplåsan fylldes med luft, varefter ett eftersläppande av dragningen åstadkom signal genom tutan. — Nog måste mötande hästar ha goda nerver för att inte skrämmas av ett dylikt odjur!
Redan under järnvägsväsendets första decennier ägnades stor uppmärksamhet åt frågan om trafiksäkerhetens främjande. Vissa uppslag i detta syfte te sig med nutidens syn på saken ganska originella; man får emellertid icke glömma, att man på den tiden rörde sig med helt andra tåghastigheter än nu.

Engelska patentet nr 2809 av år 1862, uppfinnare R. Webster, avsåg sålunda en anordning till minskande av effekten vid kollision mellan två tåg »by providing at each end of each train a fender or guide frame inclined to one side, so that the trains, when in collision, will be deflected or guided sideways from the rails, so as to pass each other». Det torde kunna anses diskutabelt, om kollision front mot front är så mycket värre, än att båda tågen kastas av rälsen åt var sitt håll.

Ett annat engelskt patent, nr 2463 av år 1865, uppfinnare C. M. Kernot och N. Symons, syftade till samma mål, men genom att vid kollision låta det ena
tåget köra upp på det andra. För ändamålet skulle på såväl lokomotivet som tågets sista vagn vara anbragt ett lutande plan, på vilket ett av de kolliderande tågen avsågs att köra upp för att stoppas mot en stoppanordning vid planets övre ände.

En amerikansk uppfinnare, W. L. Pursall, N.Y. City, föreslog i slutet av 1850-talet att förse järnvägsvagnarnas tak med räls, till och från vilka lutande spår ledde från tågets båda ändar. Om ett annat tåg mötte på linjen skulle det helt enkelt köra upp för det lutande spåret, fortsätta över taken och sedan köra ned igen på linjen, som om ingenting hänt!

Ett annat led i trafiksäkerhetssträvandena var de gängse trävagnarnas ersättande medagnar av järn, en tanke som togs upp tidigt såväl i England som i Amerika. Från år 1854 finns sålunda ett amerikanskt patent nr 10721, uppfinnare B. J. La Mothe, avseende en personvagn av större typ än den dittills brukliga och byggd så gott som helt av smidesjärn. Vagnen skulle bli både starkare och lättare än de gängse trävagnarna. Vid en i England år 1862 inträffad kollisionsolycka skall i tåget ha ingått en järnvagn, i vilken ingen person skadades, under det att i trävagnarna flera skadats och dödats.

Man får ett starkt intryck av flygteknikens snabba utveckling, när man läser om flygmaskin- och flygmotorutställningen i Kristallpalatset i London sommaren 1868, sannolikt den första i sitt slag och i sin storleksordning.

Utställningen synes ha varit förhållandevis omfattande och utställningsföremålen voro indelade i sju klasser. I den mån de representerade systemet lättare än luften (ballonger och luftskepp) förbigås de här såsom av mindre intresse.

Det största intresset knyter sig till Kl. I omfattande lätt motorer och maskiner, bland vilka märkas följande.

En roterande motor av stål, 1 hk, driven med bomullskrut; dimensioner 65 × 49 × 33 cm och vikt ca 27 kg.

En »turbine injector» ångmaskin, 1 hk, vägande mindre än 5,5 kg.

En lätt ångmaskin, 0,5 hk; cylindern med 51 mm diameter och 76 mm slag. Maskinen kunde starta på 3 min. med 7 kg/cm² ångtryck och drev två propellrar ca 1 m diam. med ca 300 varv/min. Med 2 l vatten och 0,5 kg flytande bränsle arbetade den ca 10 min. Vikten av maskin, panna, vatten och bränsle uppgick till ca 7,5 kg.

En arbetande modell av Brightons motor, en explosionsmotor med flytande bränsle (hydrocarbons) förgasat genom explosionsvärmet.

Kl. II omfattande kompletta flygapparater, därav en flygmaskin, vilken fästes vid kroppen, varigenom man kunde göra korta flygningar, och en flygapparat driven med muskelenergi.

I Kl. III visades modeller, bl. a. en »aeromotive», konstruerad att stiga och styras i luften medelst en hastigt roterande propeller på vardera sidan av maskinen. På maskinens överdel var fäst en fallskärm för långsam nedstigning i händelse av en olycka.
Teknikhistoriska notiser

Kl. IV omfattade arbetande modeller, bl. a. en visande »naturlig« flygning med vingar för framdrivning och såsom bärplan samt stjärt endast såsom bärplan (fågelmodell); denna maskin kunde flyga horisontellt en kort sträcka. Vidare visades en flygmaskin, som kunde stiga och hålla sig uppe i luften flera minuter, användande såsom drivmedel en blandning av ånga och förbränningsgaser arbetande under högt tryck i en roterande maskin, drivande propellrar.

Redan ungefär vid tidpunkten för uppkomsten av de första förslagen till propellerdrift av fartyg, eller in emot slutet av 1700-talet, framkastades även tanken på propellerns användande för framdrivning av luftfarkoster av systemet lättare än luft.

Flygplanets startning var avsedd att ske på en lutande bana på en kulle med motorn gående och planet rullande på hjulen till dess planet »får luft under vingarna« och stiger. Enligt patentskriften bör vingarnas bärtyta vara ca en kvadratfot för varje halvt skålpund vikt av planet (inklusive bränsle och last). Ett enligt patentskriften under byggnad varande flygplan uppgavs väga ca 3 000 skålpund. Vardera vingens bärtyta var ca 4 500 kvadratfot och stjärtens bärtyta ca 1 500 kvadratfot. Ångmaskinen var av högtryckstyp med en effekt av 25—30 hp(!).

Av det anförda liksom av ritningar får man en god föreställning om hur anmärkningsvårt utvecklad den patenterade flygplanskonstruktionen var med hänsyn till dess tidiga konstruktionsdatum. Ett litet modellplan enligt Hensons

Det förtjänar nämnas, att tidskriften Scientific American i sitt nr 30 år 1853 helt nedgjorde Poe Sches förslag: »— att propellern skulle kunna driva luftfarkost utan en ballong, är en omöjlighet, i lika hög grad som att upphovsmannen till förslaget skulle kunna flyga genom att fästa vingar till sina skuldror; i själva verket är det senare mer utförbart — —». I själva verket hade tidskriften rätt, kanske i omedveten grad rätt — vid tidpunkten ifråga. Vad som för 100 år sedan dömdes av Scientific American till misslyckande var nämligen motorteknikens dåvarande låga ståndpunkt. Ingen tillräckligt kraftig och samtidigt lätt motor för flygplansdrift fanns då att tillgå. De ovan omnämnda flygplansförslagen voro sålunda »före sin tid«.

Även helikopter- och autogiro-liknande konstruktioner finnas av jämförelsevis tidigt datum. En flygmaskin av helikoptertyp visas sålunda i engelska patentet nr 2330 av år 1859, uppfinnare H. Bright, Middlesex, med rubriken: »Improvements in Machinery or Apparatus for Navigating the Air«. Flygmaskinen har två horisontella propellrar med vingar »liknande väderkvarnsvingar« och monterade på var sin vertikal axel, den ena inuti den andra. En vevaxel »manövrerad av aeronauten eller andra lämpliga medel« driver medelst kugg­växel de två axlarna och därmed propellrarna i motsatta riktningar och med samma varvantal, varigenom rotation av flygkroppen kring vertikalaaxeln förhindras. Flygkroppen uppbäres av friktionsrullar, monterade på plåtar fästa på axlarna, och är försedd med en styrfena (»wind vane«). Genom omkastning av propellrarna rotationsriktning kan man få flygmaskinen att höja resp. sänka. Anordning för flygmaskinens framdrivning i horisontel riktning saknas emellertid, varför maskinen blir beroende av rådande vind.

En autogiro-liknande flygmaskinstyp visas i engelska patentet nr 1929 av år 1861, uppfinnare Viscount de Ponton D'Amécourt, G.L.M., Paris, med rubriken:
Patent 2330/1859.

Poesches flygmaskinsidé 1853.

Patent 2115/1867.
Teknikhistoriska notiser

»Improvements in Apparatus connected with Aerostation». Maskinen är av en typ analog med den föregående med två horisontella propellrar roterande åt motsatta håll och drivna av en kuggväxel, vilken i sin tur är driven med rem från en ångmaskin eller annan motor i flygkroppen. En vertikal propeller på horisontell axel, likaså driven från drivmotorn, är avsedd för flygmaskinens framdrivning i horisontell led. Vertikal- och horisontalroder för styrningen äro också anordnade.

Av nästan lika gammalt datum är ett förslag till reaktionsplan enligt engelska patentet nr 2115 av år 1867, uppfinnare J. W. Butler och E. Edwards, Middlesex, med rubriken: »Improvements in Apparatus for Floating in and Travelling through the Air«. Flygmaskinen har två triangulära, horisontella, bärande plan och under dessas föreningslinje ett vertikalt styrplan, tillsammans bildande ett flygplan i stil med de papperspilar, med vilka barn bruka leka. I det undre,

En anonym insändare i tidskriften Scientific American föreslog år 1865 att, liksom man på jorden använder sig av djurs dragförmåga, göra på samma sätt i luften. Varför inte utnyttja större kraftiga fåglars lyftförmåga och stora uthållighet, en idé som förslagsställaren sade sig ha burit på länge. Närmast tänkte han på örnar och svanar.

Det minst sagt originella förslaget gör i insändaren intryck av att vara allvarligt menat och tidskriften refererade det utan några kritiska kommentarer(!).

En »naturlig» flygmaskin.

Lokomotivmatning under gång.
Snabbtåg är ingen i hög grad sentida uppfinning. Redan för 100 år sedan körde man i England järnvägståg med en tidtabellsenlig hastighet av nära 110 km h, varvid tågsättet bestod av lokomotiv, fyra personvagnar och en bagagevagn.

Patent 10812/1886.

»Göteborgarens« tidiga föregångare.
bleve också bekvämare för passagerarna, vilka icke behövde gå från vagn till vagn. Det minskade luftmotståndet skulle dessutom medföra minskade driftkostnader.

Ångpannan och maskineriet placerades i vagnens bakparti och röken leddes ovanför vagnstaket bakåt till förebyggande av obehag för de resande. Vagnens fjädring avsågs att förbättras genom att montera vagnkorgen på luftdynor och tillåta den en viss liten sidosvajning begränsad genom pneumatiska eller andra stötdämpare. För övrigt skulle vagnen utföras så bekväm som möjligt med enkelstolar och ensamhytter, toilettrum etc. samt effektiv uppvärmning, ventilation och belysning.

Ett annat engelskt patent nr 9258 av år 1888, uppfinnare F. Engel, Schweiz, syftade till att med liten risk kunna köra järnvägståg med 160—240 km hastighet. För ändamålet skulle lokomotiv, tender och 2—3 vagnar hopbyggda till en enhet gå på en upphöjd bana eller viadukt, även i skärningar. Drivmaskineriet placerades i den främsta vagnsavdelningen och där bakom ångpannan, under det att passagerareavdelningarna placerades i tågets bakre del. Tågets fram-
ända utfördes strömlinjeformat tillspetsad med en över taket något uppskjutande förarhytt. Hela tåget skulle vara lätt byggt och dess olika avdelningar förenade med packningar av läder eller gummi. Inredningen skulle vara bekväm med rökrum etc. samt värme- och ventilationsledningar.

Huruvvida något av de ovan anförda förslagen kommit till praktiskt utförande torde vara okänt.

Framställning av generatorgas (gengas, eng. producer gas) genom förbränning av fast bränsle (stenkol, koks, träkol, ved, torv etc.) under tillförsel av luft och vattenånga samt den bildade gasens ledande genom ett överskott av glödande fast bränsle, varvid förbränningsgasernas koldioxid reduceras till brännbar kol-oxid, är en gammal uppfinning.

Det äldsta patent, som anger den ovan angivna framställningsmetoden för brännbar gas synes vara engelska patentet nr 4954 av år 1824, uppfinnare J. H. Ibbetson, Chelsea, med rubriken: »Certain Improvements in the Production or Manufacture of Gas«. Såsom uppfinningsföremål anges: »First — — — passing steam through ignited coak or other carbonaceous matter — — — Secondly, in causing the volatile results — — — in their nascent state, or in the state in which they rise, and before they undergo any process of cooling, to pass through ignited coak or other carbonaceous matter — — —«.

Så vitt känt utfördes de första praktiska försöken att framställa generatorgas år 1839 i Tyskland.

Nästa patent på området är engelska patentet nr 10733 av år 1845, uppfinnare W. Pollard, Newcastle-upon-Tyne, med rubriken »Certain Improvements in the Production of Combustible Gases, and in the Application of the same as Fuel«. I detta patent anges ännu tydligare principen för gasens framställning: »Production and application of a mixture of carbonic oxide and hydrogen, obtained by a combined blast of highly heated steam and atmospheric air, acting on ignited fuel in excess, by which means the gases which result will consist as nearly as possible of one equivalent of hydrogen and two equivalents of cabonic oxide, accompanied by the corresponding equivalents of nitrogen gas«. Även anges i patentskriften, att gasen avses »For metallurgical and other manufacturing operations in reverberatory furnaces«.

Det första förslaget att använda generatorsgas för drift av förbränningsmotor torde ha framkommit ca ett årtionde senare än det sist omnämnda patentet. Det sannolikt första patentet på området är engelska patentet nr 2767 av år 1859, uppfinnare J. Anderson, Newton, med rubriken »Improvements in Obtaining Motive Power«.

Enligt Andrewsens patent är gasgeneratorn invändigt fodrad med eldfast tegel och i nedre delen försedda med en rost, till vilken kolen inmatas. Förbränningsluften insläppts under rosten och regleras så, att ofullständig förbränning uppstår. Förbränningsgaserna uttagas i generatorns övre del. Generatorn avses vara sammanbyggd med motorn, vilken är av stationär typ och tydlig särskilt anordnad för gengasdrift.
Redan två år senare eller år 1861 följde så ytterligare två engelska patent avseende motordrift med generatorgas.

Engelska patentet nr 166 av år 1861 har till uppfannare J. B. Pascal, Lyon, och rubriken »Improvements in Generating Burning Gases to be applied as a Motive Power, and in Apparatus for the same«. Patentskriften anger att motorn drives med generatorgas och sönderdelad ånga. Generatorn är försedd med keramisk infodring; i dess nedre del är anordnad en rost, under vilken luften och ågan inledes.

Engelska patentet nr 1840 av år 1861 har till uppfannare F. Million, Paris, och rubriken »Improvements in Engines for Obtaining Motive Power by an Explosive Mixture of Inflammable Gases and Air«. Anordningen överensstämmer i stort sett med föregående patent.

Ytterligare ett jämförelsevis tidigt patent av samma slag är engelska patentet nr 1992 av år 1865, uppfannare M. P. W. Boulton, Oxfordshire, och med rubriken »Improvements in Obtaining Motive Power by Heat«.

Liksom gasgeneratorerna ursprungligen voro avsedda för metallurgiska och andra industriella ändamål avsåg motordrift med generatorgas till en början endast stationär drift. Tanken på gengasdriftens apterande på fordon synes ha framkommit jämförelsevis sent; i varje fall synes intet patent i saken ha uttagits före år 1899. Bilismen hade vid den tidpunkten knappast börjat komma igång och vid apterandet av gengasverk på fordon ställdes stora krav på aggregatets lättta konstruktion och lätthanterlighet, omständigheter vilka väl förklara dröjsmålet med tanken på gengasdrift av fordon.

Det första patent som avser fordonsdrift med gengas är engelska patentet nr 1574 av år 1899, uppfannare M. Taylor, Paris, och med rubriken: »Improvements in and connected with Gas Producers«.

Uppfinningen syftar till att göra gasgeneratorn lätt och lättkökt samt så konstruerad, att den icke skulle erfordra rinnande vatten för gasens rening, varjämte säges: »in particular it will be found serviceable for auto-car light locomotive and like traction«. Generatorn var så dimensionerad, att bränslet i detta fall träkol skulle räcka för några timmars drift. Den från generatorns övre del av motorn sugna gasen fick först passera genom tuber i en tank, omgivna av vatten. Genom värmens från gasen förångas vatten, varvid ångan i mån av behov tillsammans med förbränningsluften inleddes under generatorns rost. Från denna första kylare leddes gasen till ännu en gaskylare, där gasen genomströmmade rör kylda med luft, varefter den kylda gasen leddes in i en behållare innehållande vatten, mot vars yta gasen leddes, varvid den renades från aska och sot, innan den leddes till motorn. Beträffande igångsättandet säges helt enkelt: »When the fire has been lighted and covered over with charcoal, so as to fill the gas producer, the engine is set in operation«. Behovet av startfläkt har tydligen icke varit känt för uppfannaren, något som tyder på att patentet icke grundats på föregående praktiska försök, utan är en skrivbordsprodukt.

Redan år 1901 kom nästa patent å en gengasdriven bil, nämligen engelska patentet nr 23476 av år 1901, uppfannare J. W. Parker och G. J. C. Parker, Leeds, med rubriken: »Improvements in Motor Vehicles«.

I början av 1850-talet gjordes i England en del jämförande prov med propeller- och hjuldrift av ångfartyg, varvid en betydande energibesparing med den förstnämnda driftmetoden konstaterades, såsom framgår av nedan anförda siffror för propellerångaren Himalaya och hjulångaren Atrato, båda byggda av järn.
Ångdrift av fartyg före Robert Fulton.

<table>
<thead>
<tr>
<th></th>
<th>Himalaya</th>
<th>Atrato</th>
</tr>
</thead>
<tbody>
<tr>
<td>längd i vattenlinjen</td>
<td>336'6"</td>
<td>315'</td>
</tr>
<tr>
<td>bredd</td>
<td>46'1"</td>
<td>42'</td>
</tr>
<tr>
<td>displacement tons</td>
<td>3 220</td>
<td>3 070</td>
</tr>
<tr>
<td>indikerade hästkrafter</td>
<td>2 050</td>
<td>3 070</td>
</tr>
<tr>
<td>hastighet knop per tim.</td>
<td>15,87</td>
<td>16,08</td>
</tr>
</tbody>
</table>

Propellerångaren nådde sålunda med ett ca 5 % större tontal och en ca 33 % mindre maskineffekt en hastighet, som med endast ca 1,3 % understeg hjulångarens.

Peninsular and Oriental Steamship Companys Sultan gjorde med hjuldrift och en 420 hp ångmaskin en fart av 10,71 knop p h. Hjulen utbyttes senare mot propeller och ångmaskineffekten minskades till hälften, eller till 210 hp, var-efter ångaren gjorde en medelfart av 10,47 knop (minskning ca 2,3 %). Tack vare denna ändring kunde Sultan, som förut kunnat intaga ett kolförråd för 8 dagar, fördubbla detta, varjämte ångaren kunde taga flera passagerare och 150—200 ton mer gods.

När och av vem tanken på ångdrift av fartyg först togs upp kan knappast med större säkerhet avgöras. Sannolikheten talar för att redan de första mer eller mindre primitiva ångmaskinsförslagen födde tanken på dessas nyttiggörande i transportväsendet till såväl lands som vatten.

Ur patentets nr 6 långa rubrik citeras följande: »— — Engines or Instruments, — — as well to Ploughe Grounds without Horse or Oxen, — — and also to Make Boates for the Carryage of Burthens and Passengers runn vpon the Water as Swifte in Calmes, — — — ».

Aven engelska patenten nr 50 av år 1630 (D. Ramsay), nr 290 av år 1692 (A. Duvivier) och nr 347 av år 1696 (Th. Savery) tala om fartygsdrift med något slag av »Machine« resp. »Millwork«.

Det första förslaget till maskindrift av paddelhjul torde ha till upphovsman Denis Papin, vilken år 1690 skall ha föreslagit att driva hjulen dels genom en krutmaskin, dels genom en atmosfärisk ångmaskin. Enligt en fransk uppgift
skulle Papin år 1707 t. o. m. ha framdrivit en båt med Saverys ångmaskin på Fulda; uppgiften förefaller dock vara tvivelaktig.

Möjligheten av att Saverys nämnda patent nr 347 kan göra anspråk på att betraktas såsom det äldsta säkert kända patentet på fartygsdrift med ånga kan anses vinna stöd i den omständigheten, att samma uppfinnares patent nr 356 av år 1698 torde vara det första säkert kända ångmaskinpatentet »for raising of water by the impellent force of fire».

Från 1720-talet finnas två engelska patent (nr 468 av år 1724 och nr 475 av år 1725) avseende »Rowing engines« för fartyg.

År 1726 skall Dr J. Allen, London, ha publicerat en skrift, i vilken han föreslog att framdriva en båt genom en ångstråle i båtens akter. Hans patent nr 513 av år 1729 avser framdrivning genom en vattenstråle utdriven ur fartygets akter under vattenytan medelst en lämplig maskin, exempelvis en s. k. krutmaskin.
Teknikhistoriska notiser

Det första patent som tydligt talar om framdrivning av fartyg medelst en ångmaskin drivande skovelhjul är patentet nr 556 av år 1736, J. Hulls, London. »A Machine for Carrying Ships and Vessels out of or into any Harbour and River against Wind and Tyde, or in a Calm«. — »The power that is to put and keep this machine in motion is a fire engine. — In smooth and deep waters proper fanns are fixed to work on each side the vessel.« Ritning saknas tyvärr. Enligt uppgift voro paddelhjulen fästa på balkar, vilka sträckte sig ut över båtens akter och drevos av en atmosfärisk ångmaskin.

Under 1700-talets senare hälft tillkommo ett flertal engelska patent å ångdrivning av fartyg med olika framdrivningsmetoder, vattenstråle, spakar, paddlar och skovlar. Bland dessa patent märkes särskilt nr 1478 av år 1785, J. Brah-mah, visande den första ångmaskindrivna undervattenspropellern i fartygets akter, med möjlighet att rotera i olika riktningar för fartygets drivning fram eller back.

Vidare märkes patentet nr 2000 av år 1794, W. Lyttleton, med en ångmaskindriven »aquatic propeller«.

År 1782 sände M. Desblanc till Conservatoire national des arts et métiers i Paris en båtmodell med en ändlös drivkedja med skovlar, driven av en horisontell ångmaskin. I Amerika föreslogo år 1786 Benjamin Franklin och Oliver Evans att låta ångan verka på en vattenpelare, som drogs in vid fören och drevs ut akterut utefter kölen.

Intresset knyter sig nu till de tidigaste försöken att omsätta de olika idéerna i praktiken.

Utöver den ovan nämnda osäkra uppgiften om Papins försök år 1707 har det uppgivits att greve d’Auxiron och M. Perrier skulle ha begagnat en paddelhjulångbåt år 1774.

Den första säkra uppgiften om en ångbåt, med vilken experiment bedrivits, gäller en av markis Jouffroy byggd 130 fot lång båt, vilken i juli 1783 under en kortare stund provkördes på floden Saone nära Lyon. Framdrivningen skall ha skett medelst skovlar på ett ändlöst band drivet av en ångmaskin.

Nästan samtidigt eller år 1784 experimenterade J. Rumsey, Virginia, på Potomac River med en ca 25 m. lång båt framdriven medelst en ångmaskindriven pump. Vatten togs in i fören och utdrevs genom ett horisontellt rör i aktern. Farten var med lätt last 4 knop.

År 1786 gjorde J. Fitch ett antal experimentsfärdar på Delaware med en båt framdriven med ett antal paddlar med rorelse liknande rodd av en indiankanot. Ångmaskinen var horisontell, dubbelverkande, med kondenseringsång. År 1796 drev Fitch en liten båt på Collect Pond, N.Y. City med såväl paddelhjul på båtens sidor som skruvpropeller utstickande från båtens akter; troligen var detta det första användandet av skruvpropeller för framdrivning.

Skotten W. Symington i samarbete med P. Miller och Taylor experimenterade år 1787 framgångsrikt med ångbåtsdrift. Deras första båt hade ett dubbelskrov, i mitten försett med två skovelhjul, det ena framför det andra och drivna av en tvåcylindrige ångmaskin med 4 tums cylindrar. Vid provkörning i Dalswinton i Skottland nåddes en fart av ca 5 knop. År 1789 skall Symington ha gjort en
färd på the Forth and Clyde Canal med en båt med 12 hp ångmaskin och skovelhjul.

År 1801 byggde Symington en båt »Charlotte Dundas« med en Watts 2-cyl. ångmaskin med kondensor och akterut belägna skovelhjul. Denna båt torde kunna betraktas som den första praktiskt användbara ångbåten. Den användes för bogsering av båtar på the Forth and Clyde Canal och gjorde då en fart av ca 3,5 knop.

Väl mest tack vare Watts praktiskt användbara ångmaskiner följde så genombrottet för ångfartygsdriften, där namnet Robert Fulton står främst.

Den kanske första längre ångbåtsresan skall ha företagits av Dr Dodd år 1815 med ångaren Thames från Glasgow via Dublin till London. Resan som var stormig omfattade en sträcka av 758 sjömil, vilka avverkades på 121 tim., motsvarande en medelfart av något över 6 knop.

Ångarens första resa gick från N.Y. City till Savannah och därför till Liverpool, dit hon anlände den 21 juni 1819 efter 26 dagars Atlantfärd, varunder ånga användes endast 7 dagar. Enligt annan uppgift tog resan endast 18 dagar. Den förra uppgiften synes dock vara sannolikare och bättre överensstämmende med uppgifterna om fartygets medelfart — i god vind, utan ånga ca 3 knop och med enbart ånga och seglen beslagna ca 5 knop. Under segel och med ånga var farten utan tvivel högre.

Savannah väckte naturligt nog stort intresse, när hon anlände till Liverpool under ånga och med seglen beslagna. Färden gick vidare via Stockholm till S:t Petersborg och åter till Amerika. Fartyget visade sig dock vara oekonomiskt på grund av bränslets skrymmande beskaffenhet, varför ångmaskinen urmonterades.

Ånnu en lång oceanresa företogs få år därefter, då ångaren Enterprise gick från England till Calcutta på 113 dagar, vilket skedde år 1825.

Regelbunden ångbåtsförbindelse mellan Europa och Nordamerika kom till stånd först år 1838. Överfarten Liverpool—N.Y. City krävde då 14 à 15 dagar.
Man ser ibland i annonser i tidningarna att tillverkare av brandsäkra kassaskåp, förvaringsskåp för kartotek och liknande, bekantgöra resultat av brandprov med sådana skåp. Proven ha då oftast utförts under officiell kontroll, och utförliga intyg ha utfärdats, men det som nog allra mest fångar allmänhetens intresse är, när annonsen visar hur de handlingar, sedlar och andra föremål som förvarats i skåpet äro fullständigt intakta även efter ett hårt brandprov i hög temperatur under många timmar. Detta sätt att praktiskt visa ett fabrikats motståndskraft mot eld är ett gammalt pålitligt sätt.

Den mig af Homon updragna Förrättning börjades dermed, att Han för mig stående skåp, sammansadt af dels smidt och dels af valsadt Jern, hållande en och öfrige Tillstådesvarande förevisade ett på 2:e stenmurar på öppna marken höjd af En och En half aln, bredd En och En Åttondels aln och djup Tjugotre Tjugofjerdeles aln, allt på yttersidan, och blev i det öppnade Skåpet inlagde diverse, dels inbundna, dels i pappersband häftade råkenskapsböcker Tretton lösa Pappersark, bvardera med flera stora lacksigiller påtryckta, Trenne stycken Bankens sedlar samt ett Silfver Fickur, Hvorefter den Wedhög af Gran, efterhand ökad till Fyra Famnar och utaf hvilken var på alla sidor omgifvet, kl. 12¹⁰ e.m. antändes och inom få ögonblick stod i full låga. Stockholm ut supra.

L.S. In fidem J. H. Ritterberg Not* Pub*.

J. C. Forslund P. O. Norin E. Ericsson C. J. Lundgren
Tull Inspector f. d. rådman Orgelnist Elev Tapetserarmästare
På förebeskrifne dag den 21 Juli 1858, kl. 40 e.m., efter 3 timmars oafbruten bränning, afsläcktes elden i den härforut anförde Wedhögen, och sedan det i högen inneslutne Skåpet hvarmed Experimentet företagits, blifvit genom på-ösning af vatten afsvalnadt så att det kunde vidröras, framlemnade jag de 3"e Nycklarne, som till mig blifvit, efter sakernas inläggning i Skåpet, överlemnade och lät i min närvaro, å Embetets vågnor och af en större samling personer Herr Backman öppna detsamma och de 2"e lådorne deri och sakerna derutur efter hand framtagne och besigtigade, hvarsvid befans

Att alla sakerne voro fuktigt varma, och invärtes och utvärtes fullkomligt oskade, samt allt papper bundet så väl som löst, till fjärgen oförändrat, liksom skriften, och var sjelfva det inlagda fickuret i full gång och ännu riktigt visande. De å vissa af papperen satta sigiller voro uppmjuknade. Sålunda vara besigtigadt och befunnit, intyga vi, Alla vid förebeskrifne tillfälle närvarande.

Stockholm ut supra L.S. In fidem J. H. Ritterberg, Not* Pub*

G. H. Ehrenhoff
Kassör i R. St. Bank.
P. O. Norin
f. d. rådman
Carl Fr. Åderman
Kamrerare
Joh. Aug. Lundwall
Kryddkramhb.
Reinh. W. Ramstedt
KlådesFabriksId.
J. C. Forsslund
Tull Inspektor
Joh. Jac. Roos
Carl Fr. Ericksson
Klädesfabr. i Norrköping
Handlande
J. W. Smitt
Grosshandlare

Kassaskåpen voro av utmärkt hög kvalitet, och i en skrivelse angående »tju-veri» från slutet af 1800-talet framhölls, att svenska tjuvar ännu inte uppnått samma mästerskap som de utländska, men dock voro »temligen försigkomne». »Likväl har man», slutar skrivelens, »ännu icke försport att något af de Back- manska kassaskåpen blifvit af dessa herrar reviderade.»

Fabrikens grundare har fått sitt porträtt uppsatt på Hantverksföreningen i Stockholm. Porträttet är utfört av den kände litografen C. O. Cardon och signerat år 1893.

Ett av Backman tillverkat kassaskåp, försett med sinnrika låsanordningar, skönt utstyrt och dekorerat enligt dåtidens smak användes sedan 25 år som kassaskåp för Tekniska Museet och fungerar fortfarande fullt tillfredsställande. Museet hade 1925 annonserat efter ett begagnat kassaskåp, då medel inte fanns

Torsten Althin.
FÖRFATTAREREGISTER
UNDER TJUGO ÅR,
1931–1950
Adler, Gun:
Åskledare, en 1700-tals notis. 1944, s. 106.

Althin, Torsten:
Industrihistoriska minnesmärken. 1932, s. 110.
Polhemsstickan. 1932, s. 111.
Carl Daniel Ekmans liv och person. 1935, s. 48.
Industrihistoriska minnesmärken. 1935, s. 106.
»Hans papper äro brända!» 1938, s. 109.
Sveriges andra ångmaskin. 1939, s. 50.
Sveriges äldsta bevarade fartygspropeller. 1939, s. 94.
Augustin Ehrensvars anteckningsbok från år 1729. 1939, s. 106.
Stjernsunds manufakturverk år 1729. 1940, s. 34.
Omdömen om det tekniska museet i Stockholm för 150 år sedan. 1940, s. 103.
Kraftöverföringen Helssjön—Grängesberg år 1893 i samtida beskrivning. 1940, s. 98.
Ett Polhemsspel vid Falu gruva. 1942, s. 94.
Tjugo år. En återblick och några minnen. 1944, s. 37.
Teknik i Miniatyr. 1944, s. 102.
Om polhemsknuten. 1944, s. 107.
Elektrotekniska avdelningen på Tekniska Museet. 1945, s. 105.
Gustaf Dalén. 1945, s. 37.
Teknik- och industrihistoria. 1946, s. 39.
Thulin-samlingarna i Landskrona. 1946, s. 134.
Nya avdelningen 1947, 1948, s. 41.
Nya avdelningar 1948, 1949, s. 33.
Enkelmikroskop, som möjligen tillhör Emanuel Swedenborg. (Tills, med G. Spaak). 1950, s. 41.
Backmans kassaskåp. 1950, s. 140.

Ambrosiani, Sune:
Ett bidrag till de nordiska gjutjärnshällarnas historia, I. 1936, s. 66.
Ett bidrag till de nordiska gjutjärnshällarnas historia, II. 1937, s. 76.

Alm, Josef:
»Werchmestere«. 1943, s. 99.

Anbo, Lars:
Christopher Polhems valsverk. 1941, s. 46.

Andersson, Tore:
Den första vattenledningen? 1931, s. 117.
Sveriges första järnbro? 1931, s. 118.

Den första svenska räknemaskinen? 1932, s. 106.
Martin Wibergs räknemaskin. 1933, s. 98.
Notis om tidiga svenska ångmaskiner. 1933, s. 104.
Ångdriven karusell? 1934, s. 113.
»Elektriskt ägg?» 1935, s. 194.
Notis om ångsprutor. 1937, s. 107.

Andrén, Eric:
Rademachersmedjorna i Eskilstuna och deras arkitekt. 1942, s. 40.

Anstrin, Hans:
Från handpappersbruk till maskindrift på 1830-talet. 1935, s. 68.

Bäckström, Arvid:
Arbets- och disciplinförhållanden vid Rörstrands Porslinsfabrik under 1700-talet. 1934, s. 50.

Benedicks, Carl:
Förord till Emanuel Tranas uppsats om F. A. Kjellins elektriska induktionsugn. 1933, s. 74.

Bjärne, Alfred:
Christopher Polhems valsverk. 1941, s. 46.

Björkbom, Carl:
Ett projekt att bygga en ångmaskin i Sverige år 1725. 1936, s. 80.

Björnberg, Bertil:
Tobaksmonopolets museum. 1948, s. 00.

Bodman, Gösta:
Förstärkning av otydlig bläckskrift, 1944, s. 106.
R. W. Strehlenert. 1945, s. 47.
»Om chemiens natur«, ett 1700-talsmanuskript (kommentarer). 1946, s. 65.
Klippans superfosfattfabrik 1857—1875. 1947, s. 41.
Radioaktivering av vatten enligt John Landins patent. 1948, s. 142.
Sven Rinmans resanteckningar 1746—47. 1949, s. 71.
Sven Rinmans reseanteckningar 1746—47. 1949, s. 116.
Sven Rinmans rese om teckningar 1746—47. Del II. 1950, s. 53.
Pottaskillverkning i Sverige till 1700-talets mitt. 1950, s. 89.

Boesen, Gudmund:
Stålskulptur i de Danske Kongers Kronologiske Samling paa Rosenborg. 1941, s. 106.

Bäckström, Helmer:
Daguerréotypien i Sverige. 1943, s. 63.
Talbots fotografier på papper. 1944, s. 61.

Carlvist, Sten:
En masugnsmodell från 1700-talet. 1931, s. 121.
Polhems klädespress. 1932, s. 109.
Polhems flottbro. 1931, s. 109.

Kanonborrmaskin från 1700-talet. 1934, s. 117.
K. Tekniska Högskolans ritningssamling. 1935, s. 105.
Mudderpram från år 1749. 1937, s. 108.

Christell, Einar:
Data om fartygspropellern. 1934, s. 110.

Collberg, Gustaf:
»En telefon i varje hem«. 1943, s. 85.

Corin, Carl-Fredrik:
A. N. Edelcrant'z ångmaskinsprojekt år 1809. 1940, s. 72.

Ell, Bernhard:
Starkströmskabel på 360 meters djup. 1931, s. 82.

Falk, Erik:
Lahälls silververk. 1945, s. 97.

Forsberg, Karin:
Samling av inventioner. 1947, s. 123.

Granmalm, Georg:
Bergsrådet Johan Erik Norberg. 1941, s. 66.

Grenander-Nyberg, Gertrud:
Beklädnadsindustriens historia. 1942, s. 102.
Sömnadsindustrien. En översikt av dess uppkomst och utveckling i Sverige. 1946, s. 75.

Gullbring-Odelberg, Maj:
Crystal Palace. Kring en färglitografi. 1944, s. 83.
Två böcker. 1945, s. 114.

Göransson, Edward:
Arvid Johanssons boksamling. 1937, s. 108.

Hagen, Ellen:
Carl Bernhard Wadström. 1941, s. 78.

Hellgren, Olof:
J. F. Lundin och hans ugnskonstruktioner. 1946, s. 51.

Hernmarck, Carl:
Polhems snusdosa. 1942, s. 69.

Hessén, Gustaf:
Äldre kopparmätningsmetoder vid Falu gruva. 1932, s. 60.

Hildebrand, Elis:
Rinmanskivet. 1939, s. 105.

Hubendick, E.:
»Mera arbete«. 1931, s. 74.
Olika tiders uppfattning om temperaturbegreppet. 1932, s. 78.
Perpetuum mobile. 1933, s. 86.
James Watts liv och verk. 1936, s. 96.
Gasgeneratorn för och nu. 1941, s. 38.

Hultberg, Gösta:
Martin von Wahrendorff. 1938, s. 88.

Humbla, Philibert:
Christopher Polhems järnväg i Gävle, 1947, s. 118.

Hylander, Hans:
Hult-bokens proveniens. 1948, s. 147.

Håkansson, Harald:
Elektrotekniska data intill sekelskiftet 1900. 1938, s. 72.
En elteknisk kuriositet. 1939, s. 107.

Jansson, August V.:
Släplinorna till Andrées polarballong. 1932, s. 112.

Johansson, Arvid:
Det svenska järnets världsrykte. II. Från omkring år 1850 till nuvarande tid. 1933, s. 52.

Killig, Franz:
Öländska slipverk och skurkvarnar. 1935, s. 76.

Kjellander, Rune Gison:
J. E. Erikson, en bortglömd konstruktör och industriman. 1947, s. 89.
Lauritzen, Einar:
Svenska Filmsamfundets samlingar. 1940, s. 107.
«Carl XII»-filmen. 1941, s. 109.
Rörlig filmkamera förr och nu. 1942, s. 100.
Edisons kinetoskop och »Svarta Maria». 1943, s. 94.
När ljudfilmen kom till Stockholm. 1944, s. 100.
G. Méliès' filmatelje och »Mannen med gummihuvudet». 1946, s. 140.

Lenk, Torsten:
Daterat läskpapper. 1943, s. 94.

Landberg, Erik:
En ångmaskinsritning. 1935, s. 106.

Linder, Gurli:
Om S. A. Andréé. 1934, s. 84.

Lindh, Nils:
Hönsåters alunbruk. 1942, s. 50.

Lindmark, Tore:
Ångteknikens utveckling efter James Watt. 1936, s. 118.

Lindmark, Gunnar:
Teknikhistoriska notiser ur gamla patent. 1949, s. 103.
Teknikhistoriska notiser. 1950, s. 121.

Lundeberg, Erik:
Hesselmannmotorn som bilmotor. 1931, s. 98.

Lundwall, Sten:
Christopher Polhems skärmaskiner för urhjul. 1949, s. 51.

Malmsten, Karl:
Från krigsingeniör till bergsingeniör. 1942, s. 60.

Martin, Harald:
Ciervas autogiro. 1933, s. 94.

Matthiesen, Lennart Waye:
John Ericssons varmluftmaskin. 1932, s. 86.
En 1600-tals mättstav. 1933, s. 100.
K. Tekniska Högskolans deposition av äldre undervisningsföremål, I. 1934, s. 107.
Gotländska kalkugnar. 1935, s. 104.
K. Tekniska Högskolans deposition av äldre undervisningsföremål, II. 1935, s. 109.

En precisionsmekaniker. 1937, s. 102.
Grov ankarkätting från Tönshammars Bruk. 1941, s. 106.
En analysväg. 1941, s. 109.
Några historiska aluminiumsföremål. 1943, s. 79.
Polhemsstickan II. 1944, s. 94.
Digelpressen — från trä till järn. 1946, s. 134.
S-formad ångturbin av Gustaf de Lavals konstruktion. 1947, s. 129.

Meyer, Åke:
Rationaliseringssträvanden vid svenska gevärsvärkessamfundet under 1700-talets mitt. 1937, s. 90.
Carl Knutberg, 1937, s. 102.
En ritningsskatt. 1939, s. 68.

Montelius, Carl:
En uppfinnare berättar. 1945, s. 91.

Nauckhoff, Sigurd:
Sobreros nitroglycerin och Nobels sprängolja. 1948, s. 89.

Neumeyer, Friedrich:
Carl August Ehrensvärds ballongteckningar. 1943, s. 55.

Nihlen, John:
Spisestolpen från Kullands gård. 1931, s. 114.

Nyströmer, C. Bertil:
Carl (Carlos) Nyströmer. 1937, s. 58.

Odencrants, Arvid:
Höganäs och Kullen år 1806. 1947, s. 79.
T. A. Odencrants' reseanteckningar i Skottland. 1948, s. 67.
Ur T. A. Odencrants' dagbok. 1949, s. 63.

Olsson, Reinhold:
Per Fredrik Heffner. 1949, s. 87.

Pichler, Nils:
Automatisk brandalarm. 1939, s. 102.

Rang, Valdemar:
De gamla mudderverken i Malmö hamn. 1941, s. 100.

Rennerfelt, Ivar:
Flytande tillverkning av hästskor på 1880-talet. 1944, s. 73.
<table>
<thead>
<tr>
<th>Autor</th>
<th>Titel</th>
<th>År</th>
<th>Sida</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rönnow, Sixten</td>
<td>En glasbruksmålning. 1931</td>
<td>1931</td>
<td>108</td>
</tr>
<tr>
<td></td>
<td>Ett par fotografiska inkunabler från 1850-talet. 1932</td>
<td>1932</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Bidrag till en svensk Technologia Numismatica. 1941</td>
<td>1941</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>P. G. von Heidekens bruksvyer. 1942</td>
<td>1942</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>Svenskt Industri- och Handelsmuseum 1895–1909. 1943</td>
<td>1943</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>»Naturselbstdruck». 1945</td>
<td>1945</td>
<td>116</td>
</tr>
<tr>
<td></td>
<td>Belöningsmedaljer inom industrien. 1946</td>
<td>1946</td>
<td>139</td>
</tr>
<tr>
<td>Sahlin, Carl</td>
<td>Svenska linbanekonstruktioner. 1931</td>
<td>1931</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>Nordens äldsta byggnadsritning. 1931</td>
<td>1931</td>
<td>116</td>
</tr>
<tr>
<td></td>
<td>Presskopiering av brev. 1931</td>
<td>1931</td>
<td>116</td>
</tr>
<tr>
<td></td>
<td>Det första svenska blåkopian. 1931</td>
<td>1931</td>
<td>117</td>
</tr>
<tr>
<td></td>
<td>Det svenska järnets världsvärld. I. Från äldsta tid till omkring år 1850. 1932</td>
<td>1932</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>Det 100-årige ölet i Dannemora berghag. 1935</td>
<td>1935</td>
<td>88</td>
</tr>
<tr>
<td></td>
<td>Vaskguld i norra Skandinavien och Finland. 1936</td>
<td>1936</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>De släta fingerringarna. 1938</td>
<td>1938</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>Ervalla bruk. Dess utrustning och drift under 1600-talet. 1940</td>
<td>1940</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>Tidigt användande av läskpapper. 1941</td>
<td>1941</td>
<td>108</td>
</tr>
<tr>
<td>Simonsson, Sten</td>
<td>Ett mälteri från 1760-talet vid Leufsta bruk. 1935</td>
<td>1935</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>Om mäktning och brygd vid några gamla bruk. 1938</td>
<td>1938</td>
<td>104</td>
</tr>
<tr>
<td>Sjöstedt, Georg</td>
<td>Ljuskänsliga skiktets idehistoria. 1947</td>
<td>1947</td>
<td>69</td>
</tr>
<tr>
<td>Sköldberg, Sven</td>
<td>Christopher Polhems Konstige Tapp. 1939</td>
<td>1939</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td>Till blixtlåsens historia. 1940</td>
<td>1940</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>Beskrivning av Edelcrantz' ångmaskin. 1940</td>
<td>1940</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td>Christopher Polhems valsverk. 1941</td>
<td>1941</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>Judson originaalblixtlås till Tekniska Museet. 1942</td>
<td>1942</td>
<td>106</td>
</tr>
<tr>
<td>Smedinger, Helge</td>
<td>J. G. Darell, en pionjär inom eltekniken.</td>
<td>1940</td>
<td>100</td>
</tr>
<tr>
<td>Spåk, George</td>
<td>Enkelmikroskop, som möjligen tillhörta Emanuel Swedenborg (Tills. med T. Althin).</td>
<td>1950</td>
<td>41</td>
</tr>
<tr>
<td>Stoltz, Ehol</td>
<td>De skandinaviska alunbrukken. 1934</td>
<td>1934</td>
<td>96</td>
</tr>
<tr>
<td>Svensson, Helge</td>
<td>Jonas Wenströms-utställningen 1933, 1934</td>
<td>1933, 1934</td>
<td>102</td>
</tr>
<tr>
<td>Tandberg, Johan</td>
<td>Esaias Tegnér och magnetismen. 1939</td>
<td>1939</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>Sternhjelms mått.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Traña, Emanuel</td>
<td>F. A. Kjellins elektriska induktionsugn. 1933</td>
<td>1933</td>
<td>74</td>
</tr>
<tr>
<td>Tranæus, Bertil</td>
<td>Företagstidskrifter. 1948</td>
<td>1948</td>
<td>150</td>
</tr>
<tr>
<td>Trotzig, Dag</td>
<td>Maria kyrkas i Stockholm tornur från Stjernsund. 1938</td>
<td>1938</td>
<td>56</td>
</tr>
<tr>
<td>Törnebohm, Hilding</td>
<td>Måttens mästare, C. E. Johansson. 1944</td>
<td>1944</td>
<td>53</td>
</tr>
<tr>
<td>Weibull, Walodi</td>
<td>Alexander Lagermans livsgärning. 1934</td>
<td>1934</td>
<td>68</td>
</tr>
<tr>
<td>Ångström, Tord</td>
<td>Emanuel Swedenborgs flygplansprojekt.</td>
<td>1932</td>
<td>74</td>
</tr>
<tr>
<td>Åström, Irma</td>
<td>Linberedningsverken i Hälsingland under 1700-talet. 1950</td>
<td>1950</td>
<td>65</td>
</tr>
</tbody>
</table>
AKTIEBOLAGET
IMO-INDUSTRI

Bodåsgruvans moderna gruvspel, utfört av ASEA med IMO-hydraulik för spelbromsarna.

IMO-HYDRAULIK

Filtersal med centrala manöverbord vid Kotka Stads Vattenverk, Finland.
Kapacitet: 360 m³/tim.

VATTENRENING

Kravet på ett förstklassigt vatten för såväl samhällen som industrier gör sig alltmer gällande. Reningstekniken har under de senaste åren undergått en stark utveckling och nya moderna metoder ha framkommit, vilka på ett effektivare och billigare sätt än förr kunna lösa reningsproblemen.
Zeta elångpannor om 15 000 kW 6 000 V 25 atö.

ZETA ELÅNGPANNOR

Europas största elektriska ångpanneanläggningar är konstruerade och levererade av oss. Zeta-elpannor med en sammanlagd effekt av 1,2 miljon kW ha installerats för olika ändamål med enheter upp till 30 000 kW, 10 000 V och 40 atö arbetstryck.
Oöverträffad noggrannhet. Okänslig för överbelastning. Ljudlös gång.

IMO-mätaren sliter inte ut sig — den sliter in sig.

IMO-mätaren är en volymmätare utan några fram- och återgående eller oscillerande delar. Mätorganet består endast av de tre i ett hölje rotande IMO-skruvarna.
Svensk Ingenjörskonst och Industri i annonser från

Allmänna Svenska Elektriska AB
E. A. Bergs Fabriks AB
AB Bofors
AB Bolinder-Munktell
Elektriska Svetsnings AB
Fagersta Bruks AB
AB Ferrolegeringar
AB Malcus Holmquist
AB C. E. Johansson
AB Karlstads Mekaniska Werkstad
Köpings Mekaniska Verkstads AB
Lidköpings Mekaniska Werkstads AB
Lumalampan AB
Nitroglycerin AB
NKI-skolan
Nordisk Rotogravyr
AB Nordiska Armaturfabrikerna

Sandvikens Jernverks AB
AB Separator
Sieverts Kabelverk
AB Slipmaterial-Naxos
Smedjebackens Valsverks AB
Stockholms Superfosfat Fabriks AB
Stora Kopparbergs Bergslags AB
Svenska Cementförsäljnings AB
Cementa
AB Svenska Järnvägsverkstäderna
AB Svenska Kullagerfabriken
Svenska Turbinfabriksaktiebolaget
Ljungström
Telefon AB L M Ericsson
Uddeholms AB
AB Zander & Ingeström
November 1878. Till Bredenberg: Ett par telefoner med trumpet Kr. 55: —»

Det nya underverket

Bakom apparaterna till Bredenberg ligger dagar och nätter av möda och slit för Lars Magnus Ericsson och hans få arbetare. Långt in på nätterna brinner fotogenlampan i den nya verkstaden vid Oxtorget. Det är Lars Magnus själv som efter vanligheten glömmer sig kvar vid arbetet. Han konstruerar och förbättrar — nattvaktskontroll... signalsystem... brandalarm... telegrafapparater... Men först och främst ägnar han sitt intresse åt det nya underverket — telefonen.

Hantverket blir storindustri

Är 1896 hade företaget ombildats till aktiebolag med ett aktiekapital på en miljon kronor — i dag är det över 91 miljoner kronor. Själv deltog Lars Magnus Ericsson aktivt i arbetet till 1903, då han — 57 år gammal — definitivt drog sig tillbaka.

L M Ericsson av i dag kan inte hylla sin skapare och föregångsman på ett bättre sätt än genom att offertrutet arbeta vidare i hans spår — genom att ständigt söka skapa bättre, vackrare och pålitligare produkter.
växlaren
lått att öppna
för inspektion
och rengöring...

...ALFA-LAVAL är därför synnerli-
gen lått att rengöra och bör följakt-
ligen användas överallt, där stora
krav ställas på värmväxlaren ur hy-
gienisk synpunkt.

AKTIEBOLAGET
SEPARATOR
STOCKHOLM

Generalagent för Sverige:
AB ZANDER & INGESTROM, STOCKHOLM 16
Från vattenverket...

...till tappstället

Filterregulatorn, manöverbordet, vattenmätaren, slussventilen och tvättställsventilen är endast några få exempel på vad Nordarmatur tillverkar för vattenverk. Vi projekterar och levererar utrustningar för såväl större som mindre vattenverk samt armatur m.m. till ledningsnät och abonnentinstallationer. Vi tillverkar även kompletta filteranläggningar för avhärning, avjärning m.m.

Låt våra specialister taga del av Edra problem. De finner säkert en tekniskt och ekonomiskt god lösning.

NORDARMATUR
AB NORDISKA ARMATURFABRIKENA LINKÖPING

Ensamförsäljare för vattenmätare på stockholmsdistriktet:
FIRMA F WILHELMSON, Banérgatan 51, tel. 62 16 89
KÖPINGS FRÄSMASKINER

Vi tillverka såväl Universal-, Plan- som Vertikal-Fräsmaskiner av modernaste konstruktion i olika storlekar och utföranden, ägnade för tidsenlig produktion.

Bilden visar vår VERTIKALFRÄSMASKIN typ VF 1

21 spindelhastigheter i geom. serie 19,4—1280 r/m.

Bordets storlek är 1200 x 300 mm, med 24 matningar samt med snabbtransport i alla riktningar.

Spindelhuvudet är vridbart med autom. matning och snabbtransport av spindeln, som är lagrad i cyl. rullager. Spindel- drivningens alla kugghjul äro av legerat stål, och axlarna äro lagrade i koniska efterställbara rullager.
"Överträffas endast av diamantens hårdhet, utan att äga dess sprödhet"

SÖDERFORS REKORD HÅRDMETALL

Plattor till svarvstål
Spets till svarvdubb
Blästermunstycke
Dragstensämne

Platta till bergbatt
Stödskena

Platta till riktbäck

för bearbetning av gjutjärn, metaller, stål, stålguddoms och glas m.m. samt för bergbortar och övriga ändamål, där stark nötning och slitning förekomma.

SÖDERFORS kvalitet på säker grund

REPRESENTANTER:

GÖTEBORG: Larsson, Seaton & Co. Aktiebolag, Marieholmsgatan 36. Tel. »Larsson-Seaton«.
NORRKÖPING: Firma Verkstadsmaterial, Västra Nygatan 4. Tel. 23 785.
ÖREBRO: Firma Hugo Almbrandt, Nygatan 44. Tel. 26 949.
ESKILSTUNA: Aktiebolaget Eskilstunamagasinet, Bruksgratan 16. Tel. »Eskilstunamagasinet«.
KARLSTAD: Västsvenska Maskinaktiebolaget, Kungsgatan 18. Tel. 15 830.
SUNDSVALL: Firma Thuresson & Mörch, Storgatan 11. Tel. 15 76.

SÖDERFORS BRUK - SÖDERFORS
Detta är MELAMIN huvudbeståndsdelen i melaminplasterna.

PLASTER

MEPAL
Melaminpressmassa för pressgods med krypströmsfasthet, lukt- och smakfrihet, kokfasthet. Translusenta, ljusa beständiga färger.

KARPAL
Karbamidpressmassa, som ger pressgods med god vattenbeständighet, Translusenta, ljusa beständiga färger.

MEPAS
Lackharts för tillverkning av brännlacker med kort bränn tid och hög glans, vatten- och lösningsmedelsbeständighet.

MELURIT
Melamin- och karbamidhartser, rena och modifierade, för trälimning, västärkt papper, laminat- tillverkning, impregneringsändamål och för användning som kärnbindemedel.

PEVIKON K
Polyvinylklorid för tillverkning av folier, plastläder, rör, slang, gutfna och doppade artiklar etc.

PEVIKON S
Sampolymerisat av vinylklorid och vinylacetat för tunna beläggningar på papper och väv samt för speciallacker och klister.

FOSFATBOLLAGET
STOCKHOLM 5
Stora växelströmsmaskiner

Utvecklingen sedan år 1890 då ASEA erhöll patent på det kompletta trefassystemet har gått raskt, och maskinernas storlek har ökat i snabb takt. Från de första maskinerna på 86 kVA och 3 tons vikt har ASEA över världsnormer på 10 500 kVA år 1907, 18 900 kVA år 1915 och 22 000 kVA år 1919 i dag hunnit till maskinstorlekar på 105 000 kVA och 800 tons vikt, också detta världsnormklas.

ASEA har hittills levererat eller under arbete över 40 generatorer för 55 000 kVA medeleffekt och har f. n. 6 maskiner under tillverkning för en medeleffekt av 100 000 kVA.

ASEA:s verkstäder för stora maskiner omfatta nu över 30 000 m² golvytta med modernaste maskinpark, transport- och provningsutrustning, och vi står redo för tillverkning av elektriska maskiner av varje förekommande storlek. Bilden visar en interiör av den senast byggda fjärde hallen i ASEA:s verkstad för stora maskiner med bl. a. en 65 000 kVA trefasgenerator för Hjälta kraftverk under montering.

Utnyttja vår erfarenhet när NI planerar att utbygga Böra kraftverk.
Trafiksäkra och eleganta

A·S·J Turistbussar

I Pullman-Klass!

Aktiebolaget
Svenska Järnvägsverkstäderna
Linköping
SPECIALITET:
Grovt hejarsmide upp till 800 kg styckevikter för automobil-, flyg-, motor- och allmänna maskin- industrierna
Maskiner för pappers-, kartong- och cellulosafabriker samt för träsliperier och wallboardfabriker;
Vattenturbiner och regulatorer, tubledningar, dammluckor;
Dieselmotorer för fartyg;
Skeppspropellrar med omställbara blad (KaMeWa) för alla hk-belopp

AKTIEBOLAGET KARLSTADS MEKANISKA WERKSTAD • KARLSTAD
En slipskivas karakter bestäms av en serie faktorer, betecknade med symboler enligt internationell standard. Symbolerna sammansätts till en formel, som i allt beskriver skivan och är att likna vid dess fullständiga »förnamn och tillnamn».

Formeln 41A60-K6VA, åsatt en Slipmaterial-Naxos Alumoskiva, särskilt lämpad för skärpning av verktyg, förklaras av tabellen härennedan.

Slipmedel

<table>
<thead>
<tr>
<th>Skiva</th>
<th>Komponenter</th>
</tr>
</thead>
<tbody>
<tr>
<td>21 A Mörk elektrokorumd</td>
<td>(Alumo, Duralon)</td>
</tr>
<tr>
<td>31 A Ljus elektrokorum</td>
<td>(Alumo, Coralon)</td>
</tr>
<tr>
<td>41 A Vit elektrokorum</td>
<td>(Alumo, Verundum)</td>
</tr>
<tr>
<td>62 A Ljus elektrokorum</td>
<td>(Alumo)</td>
</tr>
<tr>
<td>13 C Svart kiselkarbid</td>
<td>(Sicto)</td>
</tr>
<tr>
<td>15 C Grön kiselkarbid</td>
<td>(Sicto, Sikarbld)</td>
</tr>
<tr>
<td>28 C Blandad kiselkarbid</td>
<td>(Sicto)</td>
</tr>
</tbody>
</table>

Kornstorlek
enl. internationella skitskalan

- 8—24 Grov
- 30—60 Medium
- 80—180 Fin
- 220—600 Mycket fin

Grad

- C—G Mycket lös
- H—K Lös
- L—O Medium
- P—S Hård
- T—Z Mycket hård

Kornspridning
betecknas med siffror från 0(tät) — 15(öppen)

Bindemedel

- V Keramiskt (VA, VN, VT, VL)
- B Bakelit
- E Shellaack
- S Silikat

Rådfråga vår kostnadsfria tekniska service!
CEJ Mikrokator
för precisionsmätning

AKTIEBOLAGET CEJ JOHANSSON
ESKILSTUNA - SWEDEN
Centerless rundslipmaskin nr 2

är huvudsakligen avsedd för arbeten, där högsta precision fordras. Minsta diametern, som kan slipas, är 0,1 mm. Vid slipning av spridarenålar till Dieselmotorer åstadkommes detaljer, hos vilka avvikelser från den geometriska formen är mindre än 1/2 μ.

LIDKÖPING centerless nr 2 fördes ut i marknaden år 1947. Sedan dess har över 50 maskiner levererats, därav 15 stycken till Schweiz.
UDDEHOLMS AKTIEBOLAG förädlar de värmländska stålmalmena och den värmländska skogen. Från verken i Hagfors, Munkfors, Nykroppa och Storfors komma järn- och stålprodukter för snart sagt alla tänkbara ändamål, och Skoghallsverken framställa silkemassa, ädelcellulosa, blekt och oblekt papperscellulosa av olika slag, kraftpapper, kraft- säckar, gummerat papper, trävaror samt en mångfald kemiska produkter.

UDDEHOLM

Ett värmlandsnamn med världsrykte
Specialister på legeringar, metaller och desoxidationsmedel för järnverk och gjuterier.

Därjämte Europas största producenter av kromalun för garverier och fotografiska ändamål.
Ett borrhål från pol till pol med COROMANT bergborrar

Jordaxeln är 1271 mil. Med COROMANT bergborrar levererade 1947 borrades sammanlagt ca 1500 mil!

Med COROMANT bergborrar borras bl. a. i:

- Sverige - kraftverksbyggen, tunnelbyggen, järngruvor, zinkgruvor, guldgruvor, stenindustrin
- Norge - kraftverksbyggen
- Frankrike - kraftverksbyggen, järngruvor, kolgruvor
- Schweiz - kraftverksbyggen
- England - kraftverksbyggen
- Canada - gruvor
- Argentina - kraftverksbyggen, gruvor, stenbrott
- Brasilien - kraftverksbyggen, gruvor
- Sydafrika - guldgruvor
- Grönland - kryolitgruvor

Öka produktionen med COROMANT!

SANDVIKENS JERNVERKS AKTIEBOLAG
SANDVIKEN
BERGS HUGGJÄRN
— naturligtvis

E. A. BERGS FABRIKS AKTIEBOLAG • ESKILSTUNA
Liksom andra moderna verkstäder kontrollerar SKF inte bara sina arbetsstycken utan också sina kontrollverktyg, en systematisk kontroll på kontrollen. Men SKF går ett steg längre: de passbitar, som användes för kontroll av kontrollverktygen, kontrolleras i sin tur i en interferenskomparator med en noggrannhet av cirka ± 20 milliondels millimeter.

SKF

FÖR VARJE STÄLLE DET RÄTTA LAGRET
Centerlessmaskinen
för de snäva toleranserna och den höga produktionen

MALCUS Centerless rundslip-maskiner med glidlager, Leonard-utrustning och mikrometerinställning klara med lätthet i daglig produktion toleranser enligt ISA 6.

MALCUS
A.-B. MALCUS HOLMQUIST • HALMSTAD
Vi är specialister på

HÖGFREKVENSAPPARATER för uppvärmningsändamål

Anläggningar för HÖGFREKVENT YTHÄRDNING

MAGNETISKA SPRICKSÖKNINGSAPPARATER

ELEKTRISKA MASKINUTRUSTNINGAR FÖR FARTYG

LIKSTRÖMSMASKINER i olika storlekar och utföranden

Större och medelstora VÄXELSTRÖMSMOTORER och GENERATORER

Rådfråga oss beträffande Edra specialproblem inom dessa områden

Elektriska ESAB Göteborg

Stockholm • Malmö • Sundsvall • Ludvika • Norrköping • Laxå
För 20 år sedan, den 11 september 1930, tillverkades den första Lumalampan. I dag är Luma Sveriges största lampfabrik med 1.500 anställda, 50.000 m² golvyta och en årsomsättning av 23 millioner kronor.

LUMA

svensk kvalitetslamp i världsklass
Nybyggnad för Albert Bonniers Förlags AB, Torsgatan, Stockholm
Helgjutet betonghus med utvändig lättbetongisolering

BLÅ-RAND-CEMENT
SVENSK CEMENTFÖRSÄLJNINGAR AB
CEMENTA
STOCKHOLM MÅLÖD GÖTEBORG
ÅTERFÖRSÄLJARE FINNAS PÅ ALLA STORRE ORTER
I början av 1920-talet blev Cos φ-problemet akut i de flesta länder i samband med den ökade användningen av asynkrona motorer. Det billigaste och bästa sättet att höja effektfaktorn visade sig vara anslutning av statiska kondensatorer till nätet.

En av våra första kondensatorer levererades till en snickerifabrik och en av de senaste leveranserna utgjordes av kondensatorer till Statens Vattenfallsverks första seriekondensator, den största i sitt slag i världen.
Världens största dubbelrotationsturbin nu i drift

Som ett led i utbyggnadsarbetena vid Kungl. Vattenfallsstyrelsens ångkraftcentral i Västerås har installerats en STAL dubbelrotationsturbin som ger en effekt av 65.000 kW — den högsta effekten i världen för en turbin av detta slag. 1951 beräknas ännu en liknande STAL-turbin vara klar att tagas i bruk.
Intressant underjordssprängning

Den 17 december 1948 ägde en sprängning av enastående slag rum i Yxsjö gruvor. I en enda salva, bestående av 288 borrhål av 3—5 meters djup laddade med 850 kg Dynamit, sprängdes då på 110 meters nivå en pelare på 1.000 ton och ett tak på 6.000 ton malm — en av de största sprängningar som ägt rum nere i en svensk gruva.

Salvan var uppdelad i tidsintervaller på så sätt, att 24 skott i pelaren och 43 skott i taket exploderade ögonblickligen, 90 skott i taket exploderade med 1 sekunds fördröjning, 59 skott i taket med 2 sekunders fördröjning och 72 skott i taket med 3 sekunders fördröjning.

Tändarna voro kopplade i 4 serier med 72 tändare i varje serie. Varje serie hade 120 ohms motstånd och tändningen skedde med kondensator från en ort på 90 meters nivå ungefär 150 meter från skottplatsen.
Munktell-traktorn
för mångsidig användning
till oöverträffat låg driftskostnad

Denna mångsidiga användning får Ni till en extra låg kostnad tack vare den ekonomiska råoljemotorn.

Några fördelar med BM-10

Motorn är råoljedriven — tvåtakts typ. Den har enkel, robust konstruktion och är dessutom mycket snål på bränsle. Växellådan har fem växlar fram och en back. Växlarerna är avpassade efter svenska jordbruksförhållanden och ger traktorn lämplig hastighet och dragförmåga vid alla förekommande arbeten. På plan och någorlunda slät väg drar traktorn med lättthet, 6-7 ton på högsta växeln, d. v. s. med en hastighet av 20 km/tim.

Elektriska utrustningen omfattande bl. a. självstart och belysning ingår som standard. Det elektriska systemet är dimensionerat med tanke på lätt start även under de ognnamsamaste yttre förhållanden under vintern.

Ställbar spårvidd och extra smal traktorkropp gör traktorn särskilt lämplig för arbeten i radodlade grödor.

Hydraulisk redskapslyft kan även erhållas till traktorn. Till denna är ett stort antal i handeln förekommande redskap avpassade. Denna anordning medför att man med det burna redskapet bekvämt kommer åt att bearbeta alla hörn och småbitar. Förflyttning av traktor och redskap till och från fälten kan ske på högsta växeln, vilket innebär en avsevärd tidsvinst. Till- och frånkoppling av redskap sker snabbt och bekvämt.

Gnistsläckare, godkänd av Statens Maskinprovningar, kan erhållas på särskild beställning. Härigenom möjliggöres riskfri inkörning i lador och andra byggnader.

Kraftuttag och remskiva kan erhållas på beställning.
För betongarbeten

SAS-ARMERINGSJÄRN och SA-NÄT

Där stora krav ställs på utförda betongarbeten, såsom för kraftstationer, broar, hamn-, fabriks-, flygfält och hangarer m.m. användas numera våra högvärdiga armeringsjärn SAS 60 och SAS 40 samt SA-armeringsnät för armeringen.

SAS-armeringsjärn

- behöva inga ändkrokor,
- ge mindre sprickor i betongen,
- minska järnätgången,
- utnyttja dessa järns höga sträckgräns,
- förbilliga konstruktionen,
- levereras i bockat eller obockat utförande.

SA-nät

- Bredder upp till 4 m.
- Tråddimensioner 2—12 mm.
- Plan mattror eller i rullar.
- Rutstorlek fr. o. m. 50 mm och uppåt.
- Variabel rutstorlek inom samma mattr samma rutstorlek, kundens önskan.
- Standarddimensioner som lagervara.

Begär offert

SMEDJEBACKENS VALSVERKS A.B
Namnangrupp: VALSVERKET.
Lägg märke till NKI-ingenjören...

33-årig Per Ake Nordin, som har gratulerats av sin lilla dotter, är en av de senast utexaminerade NKI-ingenjörerna. Deras medelålder vid examen var 29 år, och hälften var familjeförsörjare.

En NKI-ingenjör har en ovanlig studieprestation bakom sig. Han har vid sidan om sitt förvärvsarbete läst hela ingenjörskursen per korrespondens. Den dagliga praktiken har givit ett säkert underlag för de stegvis tillägnade teoretiska fackkunskaperna. Vid en slutexamen i Stockholm har han sedan fått tillfälle att inför examensvittnen från den högre tekniska undervisningen och industrin visa sin kompetens som ingenjör. Dessa examensvittnen utanför NKI-skolan har ensamma avgjort om examen kunnat godkännas eller ej.

Vid statistiska undersökningar, som nyligen företagits i fråga om på olika sätt utbildade ingenjörer, framgår bl.a.

- att NKI-ingenjörerna fått utmärkt placering i produktionen
- att flertalet NKI-ingenjörer ha chefsbefattningar eller ära egna företagare
- att NKI-ingenjörerna ofta uppmärksammas och befordrats redan under studietiden
- att NKI-ingenjörerna vid sin examen ha genomsnittligt längre praktik än andra nyutbildade ingenjörer.

NKI-skolan
S:t Eriksgatan 33 - Stockholm